As per the given question,
It is given that acceleration of the particle "(a)=\\frac{Li}{v^2}"
We know that,
"a=\\frac{dv}{dt}"
"\\Rightarrow dv= adt"
Now, substituting the value of a,
"\\int_u^v dv=\\int_0^t\\frac{Li}{v^2}dt"
"\\Rightarrow \\int_u^vv^2dv=\\int_0^tLidt"
"\\Rightarrow [\\frac{v^3}{3}]_u^v=Lit"
"\\Rightarrow v^3=3Lit+u^3"
"\\Rightarrow v=(Lit+u^3)^{1\/3}"
We know that,
"v=\\frac{dx}{dt}"
"\\Rightarrow dx=vdt"
Integrating both side with respect to t,
"x=\\int_0^t (Lit+u^3)^{1\/3}dt"
"\\Rightarrow x =[\\frac{(Lit+u^3)^{4\/3}}{4Li\/3}]_0^t"
"\\Rightarrow x=\\frac{3}{4Li}[(Lit+u^3)^{4\/3}-u^4]"
"\\Rightarrow4Lix=3[(Lit+u^3)^{4\/3}-u^4]"
Comments
Leave a comment