Question #137468
A particle leaves the 'origin with velocity u. If
it moves with an acceleration -Liv being
v2
the velocity at any instant, show that the
distance x travelled in time t is given by
4 px= (3 lit+ 112)4/3 - u4.
1
Expert's answer
2020-10-09T07:13:53-0400

As per the given question,

It is given that acceleration of the particle (a)=Liv2(a)=\frac{Li}{v^2}

We know that,

a=dvdta=\frac{dv}{dt}

dv=adt\Rightarrow dv= adt

Now, substituting the value of a,

uvdv=0tLiv2dt\int_u^v dv=\int_0^t\frac{Li}{v^2}dt


uvv2dv=0tLidt\Rightarrow \int_u^vv^2dv=\int_0^tLidt

[v33]uv=Lit\Rightarrow [\frac{v^3}{3}]_u^v=Lit

v3=3Lit+u3\Rightarrow v^3=3Lit+u^3


v=(Lit+u3)1/3\Rightarrow v=(Lit+u^3)^{1/3}

We know that,

v=dxdtv=\frac{dx}{dt}

dx=vdt\Rightarrow dx=vdt

Integrating both side with respect to t,

x=0t(Lit+u3)1/3dtx=\int_0^t (Lit+u^3)^{1/3}dt


x=[(Lit+u3)4/34Li/3]0t\Rightarrow x =[\frac{(Lit+u^3)^{4/3}}{4Li/3}]_0^t


x=34Li[(Lit+u3)4/3u4]\Rightarrow x=\frac{3}{4Li}[(Lit+u^3)^{4/3}-u^4]


4Lix=3[(Lit+u3)4/3u4]\Rightarrow4Lix=3[(Lit+u^3)^{4/3}-u^4]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS