Question #136723
a truck rolling down a hill 500ft with coefficient of friction 0.02 and gradient 2.5, what is the speed of the truck
1
Expert's answer
2020-10-05T15:31:42-0400

As per the given question,

Height of the inclined plane (h)=500ft(h)=500ft

Coefficient of friction (μ)=0.02(\mu)=0.02

Gradient (m)=tanθ=2.5(m)=\tan\theta=2.5

heightbase=2.5\Rightarrow \frac{height}{base}=2.5


500base=2.5\Rightarrow \frac{500}{base}=2.5

base=5002.5ft\Rightarrow base=\dfrac{500}{2.5}ft


base=152.42.5m\Rightarrow base=\frac{152.4}{2.5}m

base=60.96m\Rightarrow base=60.96m

sinθ=152.4164.13=0.928\sin \theta=\frac{152.4}{164.13}=0.928


cosθ=60.96164.13=0.37\cos\theta =\frac{60.96}{164.13}=0.37

Let the resultant acceleration of the truck is =a=a

So, a=gsinθμgcosθa=g\sin\theta-\mu g\cos\theta

a=9.8×0.920.02×9.8×0.37m/sec2\Rightarrow a=9.8\times 0.92-0.02\times 9.8\times 0.37 m/sec^2

a=8.943m/sec2\Rightarrow a=8.943 m/sec^2

v2=u2+2as\Rightarrow v^2=u^2+2as

v=2as\Rightarrow v=\sqrt{2as}

v=2×8.94×164.13\Rightarrow v=\sqrt{2\times 8.94\times 164.13}

v=54.17m/sec\Rightarrow v=54.17m/sec


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS