As per the given question,
Height of the inclined plane ( h ) = 500 f t (h)=500ft ( h ) = 500 f t
Coefficient of friction ( μ ) = 0.02 (\mu)=0.02 ( μ ) = 0.02
Gradient ( m ) = tan θ = 2.5 (m)=\tan\theta=2.5 ( m ) = tan θ = 2.5
⇒ h e i g h t b a s e = 2.5 \Rightarrow \frac{height}{base}=2.5 ⇒ ba se h e i g h t = 2.5
⇒ 500 b a s e = 2.5 \Rightarrow \frac{500}{base}=2.5 ⇒ ba se 500 = 2.5
⇒ b a s e = 500 2.5 f t \Rightarrow base=\dfrac{500}{2.5}ft ⇒ ba se = 2.5 500 f t
⇒ b a s e = 152.4 2.5 m \Rightarrow base=\frac{152.4}{2.5}m ⇒ ba se = 2.5 152.4 m
⇒ b a s e = 60.96 m \Rightarrow base=60.96m ⇒ ba se = 60.96 m
sin θ = 152.4 164.13 = 0.928 \sin \theta=\frac{152.4}{164.13}=0.928 sin θ = 164.13 152.4 = 0.928
cos θ = 60.96 164.13 = 0.37 \cos\theta =\frac{60.96}{164.13}=0.37 cos θ = 164.13 60.96 = 0.37
Let the resultant acceleration of the truck is = a =a = a
So, a = g sin θ − μ g cos θ a=g\sin\theta-\mu g\cos\theta a = g sin θ − μg cos θ
⇒ a = 9.8 × 0.92 − 0.02 × 9.8 × 0.37 m / s e c 2 \Rightarrow a=9.8\times 0.92-0.02\times 9.8\times 0.37 m/sec^2 ⇒ a = 9.8 × 0.92 − 0.02 × 9.8 × 0.37 m / se c 2
⇒ a = 8.943 m / s e c 2 \Rightarrow a=8.943 m/sec^2 ⇒ a = 8.943 m / se c 2
⇒ v 2 = u 2 + 2 a s \Rightarrow v^2=u^2+2as ⇒ v 2 = u 2 + 2 a s
⇒ v = 2 a s \Rightarrow v=\sqrt{2as} ⇒ v = 2 a s
⇒ v = 2 × 8.94 × 164.13 \Rightarrow v=\sqrt{2\times 8.94\times 164.13} ⇒ v = 2 × 8.94 × 164.13
⇒ v = 54.17 m / s e c \Rightarrow v=54.17m/sec ⇒ v = 54.17 m / sec
Comments