Question #136717
A sniper holding a Barret M82 Sniper Rifle fires a bullet with a speed of 853 m/s at an
angle of 35° above the horizontal.

a. What height does the bullet reach?
b. How long is the bullet in the air?
c. What is the horizontal range?
1
Expert's answer
2020-10-05T15:30:56-0400

As per the given question,

Speed of the bullet (u)=853m/sec(u)=853 m/sec

Angle (θ)=35(\theta)=35^\circ

a) Height reach by the bullet (Hmax)=u2sin2θ2g(H_{max})=\frac{u^2\sin^2\theta}{2g}


Now substituting the values, (Hmax)=8532sin2352g(H_{max})=\frac{853^2\sin^235^\circ}{2g}


(Hmax)=727609×0.3292×9.8m\Rightarrow (H_{max})=\frac{727609\times 0.329}{2\times 9.8}m

(Hmax)=12213.43m\Rightarrow (H_{max})=12213.43m


b) Let the bullet stay till T time,

(t)=2vsinθg(t)=\frac{2v\sin\theta}{g}

Now, substituting the values,

(t)=2×853×sin359.8sec(t)=\frac{2\times853\times \sin35}{9.8}sec

(t)=99.84sec\Rightarrow (t)=99.84sec


c) Let the horizontal range of the bullet is (R)

(R)=v2sin2θg(R)=\frac{v^2\sin2\theta}{g}

Now, substituting the values,

(R)=8532×sin709.8m(R) =\frac{853^2\times\sin 70}{9.8}m

(R)=69768.24m\Rightarrow (R)=69768.24m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS