2 cos a cot^2 a - 6 cos a - cot^2 a = -3 is it an identity or a conditional equation? if not an identity, solve for the unknown
The given equation "2cosa.cot^2a-6cosa-cot^2a=-3" is identity equation.
Solving the above equation,
"2cosa.cot^2a-6cosa-cot^2a=-3\\newline\n2cot^2a.cosa-cot^2a+3-6cosa=0\\newline\ncot^2a(2cosa-1)-3(2cosa-1)=0\\newline\n(cot^2a-3)(2cosa-1)=0\\newline\n(cota+ \\sqrt3)(cota-\\sqrt3)(2cosa-1)=0"
Then, we get
"cota+ \\sqrt3=0..............................1\\newline\ncota-\\sqrt3=0..............................2\\newline\n2cosa-1=0................................3"
General solution of 1 is "a=n\\pi +\\frac{5 \\pi }{6}" , 2 is "a=n\\pi +\\frac{\\pi }{6}" and 3 is "a=2n\\pi +\\frac{\\pi }{3} \\text{and}\\space a=2n\\pi +\\frac{5\\pi }{3}".
Thus, the required solution are "a=n\\pi +\\frac{5 \\pi }{6}", "a=n\\pi +\\frac{\\pi }{6}", "a=2n\\pi +\\frac{\\pi }{3} \\text{and}\\space a=2n\\pi +\\frac{5\\pi }{3}".
Comments
Leave a comment