Explain how the graph of r(x)=-3tan(1/2x)
is related to the graph of the basic trigonometric function f(x)=tanx
.
Part I: What kind of reflection does the basic function experience? (2 points)
Part II: What is the vertical stretch factor of the function R(x)? (2 points)
Vertical shift ; none
Part III: What is the horizontal stretch factor of the function R(x)? (4 points)
Step 1
Consider the functions
"r(x)=\u22123tan(\\frac{1}{2}x)"
"f(x)=tanx"
rx=−3tan12x fx=tanx
Step 2
Consider a function f(x) and its transformed function is
"g(x)=af(bx)+d"
Vertical stretch factor = |a|
Horizontal stretch factor = "\\frac{1}{b}"
Vertical shift = d
Step 3
Part I: What kind of reflection does the basic function experience?
Basic function f(x)=tanx
f(x)=tanx experience a reflation about origin.
Step 4
Part II: What is the vertical stretch factor of the function R(x)?
Vertical Stretch factor : 3
Vertical shift ; none
Step 5
Part III: What is the horizontal stretch factor of the function R(x)?
"b=\\frac {1}{2}"
Horizontal stretch factor = "1 \\div \\frac{1}{2}=2"
Comments
Leave a comment