Question #156045

We want to build a greenhouse that has a half cylinder roof of radius r and height r mounted horizontally on top of four rectangular walls of height h as shown in the figure. We have 200π m2 of plastic sheet to be used in the construction of this structure. Find the value of r for the greenhouse with the largest possible volume we can build.



1
Expert's answer
2021-01-18T16:48:42-0500

V=2r2+πr2h2;V=2r^2+\frac{\pi r^2h}{2}; Ssurface=2πr2+2r2+6rh;S_{surface}=2\pi r^2+2r^2+6rh; We applied differentiation like this:


1) dVdh+dVdr=0:\frac{dV}{dh}+\frac{dV}{dr}=0:


πr22dVdh+4r+πrh=0;\frac{\pi r^2}{2}\frac{dV}{dh}+4r+ \pi rh=0;


dVdh=2(4+πh)πr;\frac{dV}{dh}=-\frac{2(4+\pi h)}{\pi r};


2) dSdh+dSdr=0:\frac{dS}{dh}+\frac{dS}{dr}=0:

6rdSdh+4πr+4r+6h=0;6r\frac{dS}{dh}+4\pi r+4r+6h=0;


6r(2(4+πh)πr)+4πr+4r+6h=0;6r(-\frac{2(4+\pi h)}{\pi r})+4\pi r+4r+6h=0;


12(4+πh)+4π2r+4πr+6πh=0;-12(4+\pi h)+4\pi^2 r+4\pi r+6\pi h=0;


4812πh+4π2r+4πr+6πh=0;-48-12\pi h+4\pi^2 r+4\pi r+6\pi h=0;


486πh+4π2r+4πr=0;-48-6\pi h+4\pi^2 r+4\pi r=0;

h=2π2r+2πr243π;h=\frac{2\pi^2 r+2\pi r-24}{3\pi};


There is given S=πrh=200S=\pi rh=200 :


πr×2π2r+2πr243π=200;\pi r\times\frac{2\pi^2 r+2\pi r-24}{3\pi}=200;


r×(π2r+πr12)=300;r\times(\pi^2 r+\pi r-12)=300;


r×(r×(1+1π)12π2)=300;r\times(r\times(1+\frac{1}{\pi})-\frac{12}{\pi^2})=300;


r1=12+144+1200π4+1200π32π2+2πr_1=\frac{12+\sqrt{144+1200\pi ^4+1200\pi ^3}}{2\pi ^2+2\pi } r2=12144+1200π4+1200π32π2+2πr_2=\frac{12-\sqrt{144+1200\pi ^4+1200\pi ^3}}{2\pi ^2+2\pi }


Here is r2r_2 is negative. So r would get the value of r1r_1 . And can find V:


V=2r2+πr2h2;V=2r^2+\frac{\pi r^2h}{2};


V=2r2+πr2×2π2r+2πr243π2;V=2r^2+\frac{\pi r^2 \times\frac{2\pi^2 r+2\pi r-24}{3\pi}}{2};


V=2r2+r2×(2π2r+2πr24)6;V=2r^2+\frac{ r^2\times(2\pi^2 r+2\pi r-24)}{6};


V=r3(π2+π3)2r2=0;V=r^3(\frac{ \pi^2 +\pi }{3})-2r^2=0;

V=r2×(r×(π2+π3)2)=0;V=r^2\times(r\times(\frac{ \pi^2 +\pi }{3})-2)=0; where, r=12+144+1200π4+1200π32π2+2π;r=\frac{12+\sqrt{144+1200\pi ^4+1200\pi ^3}}{2\pi ^2+2\pi };


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS