V = 2 r 2 + π r 2 h 2 ; V=2r^2+\frac{\pi r^2h}{2}; V = 2 r 2 + 2 π r 2 h ; S s u r f a c e = 2 π r 2 + 2 r 2 + 6 r h ; S_{surface}=2\pi r^2+2r^2+6rh; S s u r f a ce = 2 π r 2 + 2 r 2 + 6 r h ; We applied differentiation like this:
1) d V d h + d V d r = 0 : \frac{dV}{dh}+\frac{dV}{dr}=0: d h d V + d r d V = 0 :
π r 2 2 d V d h + 4 r + π r h = 0 ; \frac{\pi r^2}{2}\frac{dV}{dh}+4r+ \pi rh=0; 2 π r 2 d h d V + 4 r + π r h = 0 ;
d V d h = − 2 ( 4 + π h ) π r ; \frac{dV}{dh}=-\frac{2(4+\pi h)}{\pi r}; d h d V = − π r 2 ( 4 + πh ) ;
2) d S d h + d S d r = 0 : \frac{dS}{dh}+\frac{dS}{dr}=0: d h d S + d r d S = 0 :
6 r d S d h + 4 π r + 4 r + 6 h = 0 ; 6r\frac{dS}{dh}+4\pi r+4r+6h=0; 6 r d h d S + 4 π r + 4 r + 6 h = 0 ;
6 r ( − 2 ( 4 + π h ) π r ) + 4 π r + 4 r + 6 h = 0 ; 6r(-\frac{2(4+\pi h)}{\pi r})+4\pi r+4r+6h=0; 6 r ( − π r 2 ( 4 + πh ) ) + 4 π r + 4 r + 6 h = 0 ;
− 12 ( 4 + π h ) + 4 π 2 r + 4 π r + 6 π h = 0 ; -12(4+\pi h)+4\pi^2 r+4\pi r+6\pi h=0; − 12 ( 4 + πh ) + 4 π 2 r + 4 π r + 6 πh = 0 ;
− 48 − 12 π h + 4 π 2 r + 4 π r + 6 π h = 0 ; -48-12\pi h+4\pi^2 r+4\pi r+6\pi h=0; − 48 − 12 πh + 4 π 2 r + 4 π r + 6 πh = 0 ;
− 48 − 6 π h + 4 π 2 r + 4 π r = 0 ; -48-6\pi h+4\pi^2 r+4\pi r=0; − 48 − 6 πh + 4 π 2 r + 4 π r = 0 ;
h = 2 π 2 r + 2 π r − 24 3 π ; h=\frac{2\pi^2 r+2\pi r-24}{3\pi}; h = 3 π 2 π 2 r + 2 π r − 24 ;
There is given S = π r h = 200 S=\pi rh=200 S = π r h = 200 :
π r × 2 π 2 r + 2 π r − 24 3 π = 200 ; \pi r\times\frac{2\pi^2 r+2\pi r-24}{3\pi}=200; π r × 3 π 2 π 2 r + 2 π r − 24 = 200 ;
r × ( π 2 r + π r − 12 ) = 300 ; r\times(\pi^2 r+\pi r-12)=300; r × ( π 2 r + π r − 12 ) = 300 ;
r × ( r × ( 1 + 1 π ) − 12 π 2 ) = 300 ; r\times(r\times(1+\frac{1}{\pi})-\frac{12}{\pi^2})=300; r × ( r × ( 1 + π 1 ) − π 2 12 ) = 300 ;
r 1 = 12 + 144 + 1200 π 4 + 1200 π 3 2 π 2 + 2 π r_1=\frac{12+\sqrt{144+1200\pi ^4+1200\pi ^3}}{2\pi ^2+2\pi } r 1 = 2 π 2 + 2 π 12 + 144 + 1200 π 4 + 1200 π 3 r 2 = 12 − 144 + 1200 π 4 + 1200 π 3 2 π 2 + 2 π r_2=\frac{12-\sqrt{144+1200\pi ^4+1200\pi ^3}}{2\pi ^2+2\pi } r 2 = 2 π 2 + 2 π 12 − 144 + 1200 π 4 + 1200 π 3
Here is r 2 r_2 r 2 is negative. So r would get the value of r 1 r_1 r 1 . And can find V:
V = 2 r 2 + π r 2 h 2 ; V=2r^2+\frac{\pi r^2h}{2}; V = 2 r 2 + 2 π r 2 h ;
V = 2 r 2 + π r 2 × 2 π 2 r + 2 π r − 24 3 π 2 ; V=2r^2+\frac{\pi r^2 \times\frac{2\pi^2 r+2\pi r-24}{3\pi}}{2}; V = 2 r 2 + 2 π r 2 × 3 π 2 π 2 r + 2 π r − 24 ;
V = 2 r 2 + r 2 × ( 2 π 2 r + 2 π r − 24 ) 6 ; V=2r^2+\frac{ r^2\times(2\pi^2 r+2\pi r-24)}{6}; V = 2 r 2 + 6 r 2 × ( 2 π 2 r + 2 π r − 24 ) ;
V = r 3 ( π 2 + π 3 ) − 2 r 2 = 0 ; V=r^3(\frac{ \pi^2 +\pi }{3})-2r^2=0; V = r 3 ( 3 π 2 + π ) − 2 r 2 = 0 ;
V = r 2 × ( r × ( π 2 + π 3 ) − 2 ) = 0 ; V=r^2\times(r\times(\frac{ \pi^2 +\pi }{3})-2)=0; V = r 2 × ( r × ( 3 π 2 + π ) − 2 ) = 0 ; where, r = 12 + 144 + 1200 π 4 + 1200 π 3 2 π 2 + 2 π ; r=\frac{12+\sqrt{144+1200\pi ^4+1200\pi ^3}}{2\pi ^2+2\pi }; r = 2 π 2 + 2 π 12 + 144 + 1200 π 4 + 1200 π 3 ;
Comments