Question #154815

solve the following equation for 0<x<360

a) 6cos² x + sin x - 4

b)9 tan x + tan² x = 5 sec² x - 3


1
Expert's answer
2021-01-11T17:32:28-0500

a) 6cos2x+sinx4=06cos^2x+sinx-4=0

let's use the following formula

cos2x+sin2x=1cos^2x+sin^2x=1

Hence, cos2x=1sin2xcos^2x=1-sin^2x

Then, the equation can be written as follows:

6(1sin2x)+sinx4=06(1-sin^2x)+sinx-4=0

Let's assume that sinx=usin x=u (hence 1u11\geq u\geq-1 )

Then, the equation can be written as follows:

6(1u2)+u4=06(1-u^2)+u-4=0

6u2+u+2=0-6u^2+u+2=0 (it is the quadratic equation).

Let's find its discriminant D:

D=124(6)2=1(48)=49=72>0D=1^2-4*(-6)*2=1-(-48)=49=7^2>0

Hence,

u1=(1+7)/(62)=6/(12)=0.5u1=(-1+7)/(-6*2)=6/(-12)=-0.5

u2=(17)/(62)=8/(12)=2/3u2=(-1-7)/(-6*2)=-8/(-12)=2/3

If sinx=0.5sin x = -0.5 then x1=210°x1=210\degree and x2=330°x2=330\degree

If sinx=2/3sinx=2/3 then x3=arcsin(2/3)=41.81°x3=arcsin(2/3)=41.81\degree and x4=arcsin(2/3)°+180=41.81°+180°=221.81°x4=arcsin(2/3)\degree+180=41.81\degree+180\degree=221.81\degree

Answer: roots of the equation are following: 210°,330°,41.81°,221.81°210\degree, 330\degree, 41.81\degree, 221.81\degree

b)

9tanx+tan2x=5sec2x39tanx+tan^2x=5sec^2x-3

9sinx/cosx+sin2x/cos2x=5/cos2x39*sinx/cosx+sin^2x/cos^2x=5/cos^2x-3

Let's multyply both sides of an equation by cos2xcos^2x :

9sinxcosx+sin2x=53cos2x9sinx*cosx+sin^2x=5-3*cos^2x


Let's use the following famous formulas:

six2x=2sinxcosxsix2x=2sinxcosx and cos2x=cos2xsin2x=12sin2x=2cos2x1cos2x=cos^2x-sin^2x=1-2sin^2x=2cos^2x-1

Hence,

9sin2x/2=53cos2x(1cos2x)=42cos2x=4(2cos2x1)19*sin2x/2=5-3cos^2x-(1-cos^2x)=4-2cos^2x=4-(2cos^2x-1)-1

Then,

4.5sin2x=3cos2x4.5*sin2x=3-cos2x This equation can be rewritten as follows:

(4.5sin2x)2=(3cos2x)2(4.5*sin2x)^2=(3-cos2x)^2

Hence,

20.25sin22x=96cos2x+cos22x20.25sin^22x=9-6cos2x+cos^22x

Then,

20.2520.25cos22x=96cos2x+cos22x20.25-20.25cos^22x=9-6cos2x+cos^22x

21.25cos22x+6cos2x+11,25=0-21.25cos^22x+6cos2x+11,25=0

Let's assume that cos2x=ucos 2x=u (hence 1u1-1\leq u \leq 1 )

Then, the equation can be written as follows:

21.25u2+6u+11.25=0-21.25u^2+6u+11.25=0 (it is the quadratic equation).

Let's find its discriminant D:

D=36411.25(21.25)=992.25=31.52>0D=36-4*11.25*(-21.25)=992.25=31.5^2>0

Hence,

u1=(6+31.5)/(2(21.25))=0.6u1=(-6+31.5)/(2*(-21.25))=-0.6

u2=(631.5)/(2(21.25))=0.8824u2=(-6-31.5)/(2*(-21.25))=0.8824


if cos2x=0.6cos2x=-0.6 then 2x=arccos(0.6)=323.14°2x=arccos( -0.6)=323.14\degree or 216.86°216.86\degree

hence x=161.57°x = 161.57\degree or x=108.43°x=108.43\degree


if cos2x=0.8824cos2x=0.8824 then 2x=arccos(0.8824)=28.06°2x=arccos(0.8824)= 28.06\degree or 151.94°151.94\degree

hence x=14.03°x=14.03\degree or x=75.97°x=75.97\degree

The potential roots of the equation are following: 161.57°,108.43°,14.03°,75.97°161.57\degree, 108.43\degree, 14.03\degree, 75.97\degree.

In the solution both parts of the equation were squared. hence, It is necessary to check the occurence of extraneous roots.

Checking the root 161.57°161.57\degree

9(0.333)+(0.333)2=5(1.054)239(-0.333)+(-0.333)^2=5(-1.054)^2-3 is not true, hence the root 161.57°161.57\degree is not correct.

Checking the root 108.43°108.43\degree

9(3)+(3)2=5(3.163)239(-3)+(-3)^2=5(-3.163)^2-3 is not true, hence the root 161.57°161.57\degree is not correct.

Checking the root 14.03°14.03\degree

9(0.249)+(0.249)2=5(1.03)239(0.249)+(0.249)^2=5(1.03)^2-3 is true, hence the root 161.57°161.57\degree is correct.

Checking the root 75.97°75.97\degree

9(4.001)+(4.001)2=5(4.125)239(4.001)+(4.001)^2=5(4.125)^2-3 is not true, hence the root 161.57°161.57\degree is not correct.

Answer: the root of equation is 161.57°161.57\degree



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS