Question #151565
In solving triangles, when do you use Law of Sines? How about the Law of Cosines? Give at least 2 examples for each.
1
Expert's answer
2020-12-20T17:59:27-0500

Use the Law of Sines if:

  • You know two sides and an angle that is not the angle between the sides.
  • You know two angles and one side.

Use the Law of Cosines if:

  • You know three sides.
  • You know two sides and an angle between them.


Examples:

Solving with the Law of Sines:

1)



  • ABsinC=ACsinB\frac{AB}{sin\angle{C}}=\frac{AC}{sin\angle{B}}
  • sinB=sinCACAB=12333=32sin\angle{B}=\frac{sin\angle{C}*AC}{AB} = \frac{\frac{1}{2}*3\sqrt{3}}{3} =\frac{\sqrt{3}}{2}
  • B=arcsin(sinB)=arcsin(32)=60°\angle{B} = arcsin(sin\angle{B}) = arcsin(\frac{\sqrt{3}}{2}) = 60°
  • A+B+C=180°\angle{A} + \angle{B} + \angle{C} = 180°
  • A=180°BC=180°60°30°=90°\angle{A} = 180°-\angle{B} - \angle{C} = 180°-60°-30° = 90°
  • ABsinC=BCsinA\frac{AB}{sin\angle{C}}=\frac{BC}{sin\angle{A}}
  • BC=ABsinAsinC=3112=6BC=\frac{AB*sin\angle{A}}{sin\angle{C}}=\frac{3*1}{\frac{1}{2}} = 6
  • Triangle solved!

2)


  • A+B+C=180°\angle{A} + \angle{B} + \angle{C} = 180°
  • B=180°AC=180°90°30°=60°\angle{B} = 180°-\angle{A} - \angle{C} = 180°-90°-30° = 60°
  • ABsinC=BCsinA\frac{AB}{sin\angle{C}}=\frac{BC}{sin\angle{A}}
  • AB=BCsinCsinA=6121=3AB=\frac{BC*sin\angle{C}}{sin\angle{A}}=\frac{6*\frac{1}{2}}{1} = 3
  • ACsinB=BCsinA\frac{AC}{sin\angle{B}}=\frac{BC}{sin\angle{A}}
  • AC=BCsinBsinA=6321=33AC=\frac{BC*sin\angle{B}}{sin\angle{A}}=\frac{6*\frac{\sqrt{3}}{2}}{1} = 3\sqrt{3}
  • Triangle solved!


Solving with the Law of Cosines:

1)


  • BC2=AB2+AC22ABACcosABC^2=AB^2+AC^2-2*AB*AC*cos\angle{A}
  • cosA=BC2AB2AC22ABAC=6232(33)2233=0cos\angle{A} = \frac{BC^2-AB^2-AC^2}{2*AB*AC} = \frac{6^2-3^2-(3\sqrt{3})^2}{2*3\sqrt{3}} = 0
  • A=arccos(cosA)=arccos(0)=90°\angle{A} = arccos(cos\angle{A}) = arccos(0) = 90°
  • AB2=BC2+AC22BCACcosCAB^2=BC^2+AC^2-2*BC*AC*cos\angle{C}
  • cosC=AB2BC2AC22BCAC=3262(33)22633=32cos\angle{C} = \frac{AB^2-BC^2-AC^2}{2*BC*AC} = \frac{3^2-6^2-(3\sqrt{3})^2}{2*6*3\sqrt{3}} = \frac{\sqrt{3}}{2}
  • C=arccos(cosC)=arccos(32)=30°\angle{C} = arccos(cos\angle{C}) = arccos(\frac{\sqrt{3}}{2}) = 30°
  • A+B+C=180°\angle{A}+\angle{B}+\angle{C} = 180°
  • B=180°AC=180°90°30°=60°\angle{B}= 180°-\angle{A}-\angle{C} = 180°-90°-30° = 60°
  • Triangle solved!

2)

  • BC2=AB2+AC22ABACcosABC^2=AB^2+AC^2-2*AB*AC*cos\angle{A}
  • BC=AB2+AC22ABACcosA=32+(33)223330=36=6BC = \sqrt{AB^2+AC^2-2*AB*AC*cos\angle{A}} = \sqrt{3^2+(3\sqrt{3})^2-2*3*3\sqrt{3}*0}=\sqrt{36}=6
  • AB2=BC2+AC22BCACcosCAB^2=BC^2+AC^2-2*BC*AC*cos\angle{C}
  • cosC=AB2BC2AC22BCAC=3262(33)22633=32cos\angle{C} = \frac{AB^2-BC^2-AC^2}{2*BC*AC} = \frac{3^2-6^2-(3\sqrt{3})^2}{2*6*3\sqrt{3}} = \frac{\sqrt{3}}{2}
  • C=arccos(cosC)=arccos(32)=30°\angle{C} = arccos(cos\angle{C}) = arccos(\frac{\sqrt{3}}{2}) = 30°
  • A+B+C=180°\angle{A}+\angle{B}+\angle{C} = 180°
  • B=180°AC=180°90°30°=60°\angle{B}= 180°-\angle{A}-\angle{C} = 180°-90°-30° = 60°
  • Triangle solved!

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS