Use the Law of Sines if:
- You know two sides and an angle that is not the angle between the sides.
- You know two angles and one side.
Use the Law of Cosines if:
- You know three sides.
- You know two sides and an angle between them.
Examples:
Solving with the Law of Sines:
1)
- sin∠CAB=sin∠BAC
- sin∠B=ABsin∠C∗AC=321∗33=23
- ∠B=arcsin(sin∠B)=arcsin(23)=60°
- ∠A+∠B+∠C=180°
- ∠A=180°−∠B−∠C=180°−60°−30°=90°
- sin∠CAB=sin∠ABC
- BC=sin∠CAB∗sin∠A=213∗1=6
- Triangle solved!
2)
- ∠A+∠B+∠C=180°
- ∠B=180°−∠A−∠C=180°−90°−30°=60°
- sin∠CAB=sin∠ABC
- AB=sin∠ABC∗sin∠C=16∗21=3
- sin∠BAC=sin∠ABC
- AC=sin∠ABC∗sin∠B=16∗23=33
- Triangle solved!
Solving with the Law of Cosines:
1)

- BC2=AB2+AC2−2∗AB∗AC∗cos∠A
- cos∠A=2∗AB∗ACBC2−AB2−AC2=2∗3362−32−(33)2=0
- ∠A=arccos(cos∠A)=arccos(0)=90°
- AB2=BC2+AC2−2∗BC∗AC∗cos∠C
- cos∠C=2∗BC∗ACAB2−BC2−AC2=2∗6∗3332−62−(33)2=23
- ∠C=arccos(cos∠C)=arccos(23)=30°
- ∠A+∠B+∠C=180°
- ∠B=180°−∠A−∠C=180°−90°−30°=60°
- Triangle solved!
2)
- BC2=AB2+AC2−2∗AB∗AC∗cos∠A
- BC=AB2+AC2−2∗AB∗AC∗cos∠A=32+(33)2−2∗3∗33∗0=36=6
- AB2=BC2+AC2−2∗BC∗AC∗cos∠C
- cos∠C=2∗BC∗ACAB2−BC2−AC2=2∗6∗3332−62−(33)2=23
- ∠C=arccos(cos∠C)=arccos(23)=30°
- ∠A+∠B+∠C=180°
- ∠B=180°−∠A−∠C=180°−90°−30°=60°
- Triangle solved!
Comments