Question #154844

given sin x = 3/5 and cos y = -4/5 , x is an acute angle and y is and obtuse angle . find :

a)cot a + cos ec y

b)sin 2x + tan 2y


1
Expert's answer
2021-01-12T11:21:24-0500
sin2x+cos2x=1\sin ^2x +\cos^2 x=1

Given sinx=3/5,cosx>0.\sin x=3/5, \cos x>0. Then


cosx=1sin2x=1(3/5)2=4/5\cos x=\sqrt{1-\sin^2 x}=\sqrt{1-(3/5)^2}=4/5

Given cosy=4/5,siny>0.\cos y=-4/5, \sin y>0. Then


siny=1cos2y=1(4/5)2=3/5\sin y=\sqrt{1-\cos^2 y}=\sqrt{1-(-4/5)^2}=3/5


a)

cotx=cosxsinx=4/53/5=4/3\cot x=\dfrac{\cos x}{\sin x}=\dfrac{4/5}{3/5}=4/3

cosecy=1siny=13/5=5/3\cosec y=\dfrac{1}{\sin y}=\dfrac{1}{3/5}=5/3

cotx+cosecy=4/3+5/3=3\cot x+\cosec y=4/3+5/3=3

b)


sin2x=2sinxcosx=2(3/5)(4/5)=24/25\sin 2x=2\sin x\cos x=2(3/5)(4/5)=24/25

tany=sinycosy=3/54/5=3/4\tan y=\dfrac{\sin y}{\cos y}=\dfrac{3/5}{-4/5}=-3/4

tan2y=2tany1tan2y=2(3/4)1(3/4)2=24/7\tan 2y=\dfrac{2\tan y}{1-\tan^2 y}=\dfrac{2(-3/4)}{1-(-3/4)^2}=-24/7

sin2x+tan2y=24/2524/7=432/175\sin 2x+\tan 2y=24/25-24/7=-432/175

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS