sin 2 x + cos 2 x = 1 \sin ^2x +\cos^2 x=1 sin 2 x + cos 2 x = 1 Given sin x = 3 / 5 , cos x > 0. \sin x=3/5, \cos x>0. sin x = 3/5 , cos x > 0. Then
cos x = 1 − sin 2 x = 1 − ( 3 / 5 ) 2 = 4 / 5 \cos x=\sqrt{1-\sin^2 x}=\sqrt{1-(3/5)^2}=4/5 cos x = 1 − sin 2 x = 1 − ( 3/5 ) 2 = 4/5 Given cos y = − 4 / 5 , sin y > 0. \cos y=-4/5, \sin y>0. cos y = − 4/5 , sin y > 0. Then
sin y = 1 − cos 2 y = 1 − ( − 4 / 5 ) 2 = 3 / 5 \sin y=\sqrt{1-\cos^2 y}=\sqrt{1-(-4/5)^2}=3/5 sin y = 1 − cos 2 y = 1 − ( − 4/5 ) 2 = 3/5
a)
cot x = cos x sin x = 4 / 5 3 / 5 = 4 / 3 \cot x=\dfrac{\cos x}{\sin x}=\dfrac{4/5}{3/5}=4/3 cot x = sin x cos x = 3/5 4/5 = 4/3
cosec y = 1 sin y = 1 3 / 5 = 5 / 3 \cosec y=\dfrac{1}{\sin y}=\dfrac{1}{3/5}=5/3 cosec y = sin y 1 = 3/5 1 = 5/3
cot x + cosec y = 4 / 3 + 5 / 3 = 3 \cot x+\cosec y=4/3+5/3=3 cot x + cosec y = 4/3 + 5/3 = 3
b)
sin 2 x = 2 sin x cos x = 2 ( 3 / 5 ) ( 4 / 5 ) = 24 / 25 \sin 2x=2\sin x\cos x=2(3/5)(4/5)=24/25 sin 2 x = 2 sin x cos x = 2 ( 3/5 ) ( 4/5 ) = 24/25
tan y = sin y cos y = 3 / 5 − 4 / 5 = − 3 / 4 \tan y=\dfrac{\sin y}{\cos y}=\dfrac{3/5}{-4/5}=-3/4 tan y = cos y sin y = − 4/5 3/5 = − 3/4
tan 2 y = 2 tan y 1 − tan 2 y = 2 ( − 3 / 4 ) 1 − ( − 3 / 4 ) 2 = − 24 / 7 \tan 2y=\dfrac{2\tan y}{1-\tan^2 y}=\dfrac{2(-3/4)}{1-(-3/4)^2}=-24/7 tan 2 y = 1 − tan 2 y 2 tan y = 1 − ( − 3/4 ) 2 2 ( − 3/4 ) = − 24/7
sin 2 x + tan 2 y = 24 / 25 − 24 / 7 = − 432 / 175 \sin 2x+\tan 2y=24/25-24/7=-432/175 sin 2 x + tan 2 y = 24/25 − 24/7 = − 432/175
Comments