Solution: Given volume =45πm3∴πR2H=45π⇒H=R245 ......................................................................(1)When the pool is full,the water is lost at the rate,L=aR2+bR2H+cRH2 (h=H)a=3001,b=c=1501∴L=3001R2+1501R2R245+1501R(R245)2simplifying,wegetL=3001R2+103+227(R31), for 0<R<∞Hence we want to, minimize L=3001R2+103+227(R31)
We first find the critical points,dRdL=dRd(3001R2+103+227(R31))=0
⇒150R+0+227(R4−3)=0⇒150R−2R481=0⇒150R4R5−6075=0⇒R5−6075=0⇒R5=6075⇒R=(6075)51⇒R=3(5)52 m⇒R≈5.711 m
At R=5.711 m,H=R245=5.71145=1.379 mdR2d2L=1501+281R54⇒dR2d2L=1501+R5162 at R=5.711 m,⇒dR2d2L=1501+(5.711)5162>0Hence at R=5.711 m ,loss L is minimum ∴Dimensionofpool,R=5.711 m and H=1.379 mHenceRadius,R=5.711m and depth,H=1.379m
Comments