"1.)a = b = 78\u00b020\u2019\u2019\tC = 118\u00b050\u2019"
Cosine Law for side
Given a=b
Therefore
"\\cos c=\\cos\u00b2 a+\\sin\u00b2 a \\cos C"
"\\cos c=\\cos^278\u00b020\u2019\u2019\t+\\sin^2 78\u00b020\u2019\u2019\\cos 118\u00b050\u2019\\approx""-0.4182"
"c\\approx114\u00b043'26''"
Sine law
"\\frac{\\sin a}{\\sin A}=\\frac{\\sin b}{\\sin B}=\\frac{\\sin c}{\\sin C}"
"\\sin A= \\sin B=" "\\frac{\\sin a \\sin C}{\\sin c}"
"\\sin A=\\sin B= \\frac{\\sin 78\u00b020\u2019\u2019}{\\sin 114\u00b043'26''}{\\sin 118\u00b050'}"
"A=B=70\u00b037'35''"
Or
"A=B=109\u00b022'25''"
"2.) A = B = 95\u00b05'\tC = 100\u00b010'"
Cosine law of angles
"\\cos A =-\\cos B \\cos C+\\sin B\\sin C\\cos a"
"\\cos B =-\\cos A \\cos C+\\sin A\\sin C\\cos b"
"\\cos C =-\\cos A \\cos B+\\sin A\\sin B\\cos c"
"a=\\cos^\u2014\u00b9=\\frac{\\cos 95\u00b05'+\\cos 95\u00b05' \\cos 100\u00b010'}{\\sin 95\u00b05'\\sin 100\u00b010'}"
"a\\approx94\u00b016'5''"
"c=\\cos^\u2014\u00b9=\\frac{\\cos 100\u00b010' +\\cos^\u00b2 95\u00b05'}{\\sin^\u00b295\u00b05'}"
"c\\approx99\u00b047'15''"
"3.) B = 72\u00b048'\tb = 64\u00b052'"
"a=b = 64\u00b052'"
Napier's analogies
"\\frac{\\cos (\\frac{1}{2}(A-B)}{\\cos (\\frac{1}{2}(A+B)}=\\frac{\\tan (\\frac{1}{2}(a+b)}{\\tan (\\frac{1}{2}c)}"
"{\\tan (\\frac{1}{2}c)}= \\cos A\\tan a"
"c=2\\tan^\u2014\u00b9=(\\cos (72\u00b048')\\tan(64\u00b052'))"
"c\\approx64\u00b026'51''"
Sine law
"\\frac{\\sin a}{\\sin A}=\\frac{\\sin b}{\\sin B}=\\frac{\\sin c}{\\sin C}"
"\\sin C=\\frac{\\sin c \\sin B}{\\sin b}"
"C=\\sin^\u2014\u00b9(\\frac{\\sin 72\u00b048' \\sin 64\u00b026'51'' }{\\sin 64\u00b052' })"
"C \\approx72\u00b010'15''"
Or
"C\\approx107\u00b049'45''"
"4.) A = C = 50\u00b010'\tc = 95\u00b0"
"a=c=95\u00b0"
Napier's analogies
"\\frac{\\cos (\\frac{1}{2}(A-C)}{\\cos (\\frac{1}{2}(A+C)}=\\frac{\\tan (\\frac{1}{2}(a+c)}{\\tan (\\frac{1}{2}b)}"
"{\\tan (\\frac{1}{2}b)}= \\cos A\\tan a"
"{\\tan (\\frac{1}{2}b)}= \\cos 50\u00b010'\\tan 95\u00b0\\approx -7.0108"
"\\frac{1}{2}{b}>=90\u00b0>=b>180\u00b0"
"a+b+c>95\u00b0+95\u00b0+180\u00b0=370\u00b0"
Therefore the isosceles spherical triangle with A = C = 50°10’ c = 95° does not exist.
"5.) B = C = 78\u00b044' b = 18\u00b016'"
"c=b=18\u00b016'"
Napier's analogies
"\\frac{\\cos (\\frac{1}{2}(B-C)}{\\cos (\\frac{1}{2}(B+C)}=\\frac{\\tan (\\frac{1}{2}(b+c)}{\\tan (\\frac{1}{2}a)}"
"{\\tan (\\frac{1}{2}a)}= \\cos B\\tan b"
"a=2\\tan^\u2014\u00b9=(\\cos (78\u00b044')\\tan(18\u00b016'))"
"a=7\u00b022'47''"
Sine law
"\\frac{\\sin a}{\\sin A}=\\frac{\\sin b}{\\sin B}=\\frac{\\sin c}{\\sin C}"
"\\sin A=\\frac{\\sin a \\sin B}{\\sin b}"
"A=\\sin^\u2014\u00b9(\\frac{\\sin 78\u00b044' \\sin 7\u00b022'51'' }{\\sin 18\u00b016' })\\approx23\u00b012'1'"
"A=23\u00b012'1'"
Or
"A=156\u00b047'59''"
Comments
Leave a comment