1.)a=b=78°20’’C=118°50’
Cosine Law for side
cosc=cosacosb+sinasinbcosC Given a=b
Therefore
cosc=cos2a+sin2acosC
cosc=cos278°20’’+sin278°20’’cos118°50’≈−0.4182
c≈114°43′26′′
Sine law
sinAsina=sinBsinb=sinCsinc
sinA=sinB= sincsinasinC
sinA=sinB=sin114°43′26′′sin78°20’’sin118°50′
A=B=70°37′35′′
Or
A=B=109°22′25′′
2.)A=B=95°5′C=100°10′
Cosine law of angles
cosA=−cosBcosC+sinBsinCcosa
cosB=−cosAcosC+sinAsinCcosb
cosC=−cosAcosB+sinAsinBcosc
a=cos1=sin95°5′sin100°10′cos95°5′+cos95°5′cos100°10′
a≈94°16′5′′
c=cos1=sin²95°5′cos100°10′+cos²95°5′
c≈99°47′15′′
3.)B=72°48′b=64°52′
a=b=64°52′
Napier's analogies
cos(21(A+B)cos(21(A−B)=tan(21c)tan(21(a+b)
tan(21c)=cosAtana
c=2tan1=(cos(72°48′)tan(64°52′))
c≈64°26′51′′
Sine law
sinAsina=sinBsinb=sinCsinc
sinC=sinbsincsinB
C=sin1(sin64°52′sin72°48′sin64°26′51′′)
C≈72°10′15′′
Or
C≈107°49′45′′
4.)A=C=50°10′c=95°
a=c=95°
Napier's analogies
cos(21(A+C)cos(21(A−C)=tan(21b)tan(21(a+c)
tan(21b)=cosAtana
tan(21b)=cos50°10′tan95°≈−7.0108
21b>=90°>=b>180°
a+b+c>95°+95°+180°=370°
Therefore the isosceles spherical triangle with A = C = 50°10’ c = 95° does not exist.
5.)B=C=78°44′b=18°16′
c=b=18°16′
Napier's analogies
cos(21(B+C)cos(21(B−C)=tan(21a)tan(21(b+c)
tan(21a)=cosBtanb
a=2tan1=(cos(78°44′)tan(18°16′))
a=7°22′47′′
Sine law
sinAsina=sinBsinb=sinCsinc
sinA=sinbsinasinB
A=sin1(sin18°16′sin78°44′sin7°22′51′′)≈23°12′1′
A=23°12′1′
Or
A=156°47′59′′
Comments