Question #139004
Find the missing parts of an isosceles spherical triangle.
1.) a = b = 78°20’’ C = 118°50’
2.) A = B = 95°5’ C = 100°10’
3.) B = 72°48’ b = 64°52’
4.) A = C = 50°10’ c = 95°
5.) B = C = 78°44’ b = 18°16’
1
Expert's answer
2020-10-22T14:13:02-0400

1.)a=b=78°20’’C=118°501.)a = b = 78°20’’ C = 118°50’

Cosine Law for side



cosc=cosacosb+sinasinbcosC\cos c=\cos a\cos b+\sin a\sin b \cos C

Given a=b

Therefore

cosc=cos2a+sin2acosC\cos c=\cos² a+\sin² a \cos C

cosc=cos278°20’’+sin278°20’’cos118°50\cos c=\cos^278°20’’ +\sin^2 78°20’’\cos 118°50’\approx0.4182-0.4182

c114°4326c\approx114°43'26''

Sine law

sinasinA=sinbsinB=sincsinC\frac{\sin a}{\sin A}=\frac{\sin b}{\sin B}=\frac{\sin c}{\sin C}


sinA=sinB=\sin A= \sin B= sinasinCsinc\frac{\sin a \sin C}{\sin c}



sinA=sinB=sin78°20’’sin114°4326sin118°50\sin A=\sin B= \frac{\sin 78°20’’}{\sin 114°43'26''}{\sin 118°50'}

A=B=70°3735A=B=70°37'35''


Or

A=B=109°2225A=B=109°22'25''



2.)A=B=95°5C=100°102.) A = B = 95°5' C = 100°10'


Cosine law of angles

cosA=cosBcosC+sinBsinCcosa\cos A =-\cos B \cos C+\sin B\sin C\cos a

cosB=cosAcosC+sinAsinCcosb\cos B =-\cos A \cos C+\sin A\sin C\cos b

cosC=cosAcosB+sinAsinBcosc\cos C =-\cos A \cos B+\sin A\sin B\cos c

a=cos1=cos95°5+cos95°5cos100°10sin95°5sin100°10a=\cos^—¹=\frac{\cos 95°5'+\cos 95°5' \cos 100°10'}{\sin 95°5'\sin 100°10'}


a94°165a\approx94°16'5''

c=cos1=cos100°10+cos²95°5sin²95°5c=\cos^—¹=\frac{\cos 100°10' +\cos^² 95°5'}{\sin^²95°5'}


c99°4715c\approx99°47'15''


3.)B=72°48b=64°523.) B = 72°48' b = 64°52'

a=b=64°52a=b = 64°52'


Napier's analogies


cos(12(AB)cos(12(A+B)=tan(12(a+b)tan(12c)\frac{\cos (\frac{1}{2}(A-B)}{\cos (\frac{1}{2}(A+B)}=\frac{\tan (\frac{1}{2}(a+b)}{\tan (\frac{1}{2}c)}


tan(12c)=cosAtana{\tan (\frac{1}{2}c)}= \cos A\tan a


c=2tan1=(cos(72°48)tan(64°52))c=2\tan^—¹=(\cos (72°48')\tan(64°52'))

c64°2651c\approx64°26'51''

Sine law

sinasinA=sinbsinB=sincsinC\frac{\sin a}{\sin A}=\frac{\sin b}{\sin B}=\frac{\sin c}{\sin C}


sinC=sincsinBsinb\sin C=\frac{\sin c \sin B}{\sin b}


C=sin1(sin72°48sin64°2651sin64°52)C=\sin^—¹(\frac{\sin 72°48' \sin 64°26'51'' }{\sin 64°52' })

C72°1015C \approx72°10'15''

Or


C107°4945C\approx107°49'45''


4.)A=C=50°10c=95°4.) A = C = 50°10' c = 95°

a=c=95°a=c=95°

Napier's analogies


cos(12(AC)cos(12(A+C)=tan(12(a+c)tan(12b)\frac{\cos (\frac{1}{2}(A-C)}{\cos (\frac{1}{2}(A+C)}=\frac{\tan (\frac{1}{2}(a+c)}{\tan (\frac{1}{2}b)}


tan(12b)=cosAtana{\tan (\frac{1}{2}b)}= \cos A\tan a


tan(12b)=cos50°10tan95°7.0108{\tan (\frac{1}{2}b)}= \cos 50°10'\tan 95°\approx -7.0108


12b>=90°>=b>180°\frac{1}{2}{b}>=90°>=b>180°


a+b+c>95°+95°+180°=370°a+b+c>95°+95°+180°=370°


Therefore the isosceles spherical triangle with A = C = 50°10’ c = 95° does not exist.

5.)B=C=78°44b=18°165.) B = C = 78°44' b = 18°16'

c=b=18°16c=b=18°16'

Napier's analogies


cos(12(BC)cos(12(B+C)=tan(12(b+c)tan(12a)\frac{\cos (\frac{1}{2}(B-C)}{\cos (\frac{1}{2}(B+C)}=\frac{\tan (\frac{1}{2}(b+c)}{\tan (\frac{1}{2}a)}


tan(12a)=cosBtanb{\tan (\frac{1}{2}a)}= \cos B\tan b


a=2tan1=(cos(78°44)tan(18°16))a=2\tan^—¹=(\cos (78°44')\tan(18°16'))


a=7°2247a=7°22'47''

Sine law

sinasinA=sinbsinB=sincsinC\frac{\sin a}{\sin A}=\frac{\sin b}{\sin B}=\frac{\sin c}{\sin C}

sinA=sinasinBsinb\sin A=\frac{\sin a \sin B}{\sin b}

A=sin1(sin78°44sin7°2251sin18°16)23°121A=\sin^—¹(\frac{\sin 78°44' \sin 7°22'51'' }{\sin 18°16' })\approx23°12'1'


A=23°121A=23°12'1'

Or

A=156°4759A=156°47'59''



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS