Let us assume that "w=-p", where "p" is a positive real number. Next we use the trigonometric form of complex number
"p= \\rho(\\cos\\varphi + i\\sin\\varphi)."
For positive real numbers "\\varphi = 0" and "\\rho=p" , so
"p = p(\\cos 0 + i\\sin 0)."
Therefore
"w=-p=-p(\\cos 0 + i\\sin 0) = p(\\cos\\pi + i\\sin\\pi),"
because "\\cos\\pi = -\\cos 0" and "\\sin\\pi = \\sin 0."
a) Let us assume that
"z = \\rho(\\cos\\theta+i\\sin\\theta)"
According to de Moivre's formula,
"z^6 = \\rho^6(\\cos(6\\theta)+i\\sin(6\\theta))".
Since "z" is a 6th root of "w",
"z^6=w"
and
"\\rho^6(\\cos(6\\theta)+i\\sin(6\\theta)) = p(\\cos\\pi +i\\sin\\pi)."
Therefore we get "\\rho^6=p" , "\\cos(6\\theta)=\\cos\\pi" , "\\sin(6\\theta)=\\sin\\pi." Then we obtain
"\\rho=p^{1\/6},\n\n6\\theta=\\pi +2\\pi k, k \\in \\mathbb{Z}."
Finally, we get
"\\rho=p^{1\/6},\n\n\\theta(k)=\\dfrac{\\pi +2\\pi k}{6}, k \\in \\mathbb{Z}."
We can see that we will obtain the same "\\sin\\theta, \\cos\\theta" for "k\\equiv_6 m" , so we consider only "k=0,1,\\ldots 5."
Next we obtain
"z(k)=p^{1\/6}(\\cos(\\frac{\\pi+2\\pi k}{6}) + i\\sin(\\frac{\\pi+2\\pi k}{6})), k = 0,\\,\\ldots, 5."
b) Here "w=-729" . In trigonometric form
"w=729(\\cos\\pi + i\\sin\\pi),"
according to the formula in a) 6th roots are
"z(k)= 729^{1\/6}(\\cos(\\frac{\\pi+2\\pi k}{6}) + i\\sin(\\frac{\\pi+2\\pi k}{6})), k = 0,\\,\\ldots, 5."
Therefore,
"z(0)=3(\\cos(\\frac{\\pi}{6}) + i\\sin(\\frac{\\pi}{6})) = 3(\\frac{\\sqrt{3}}{2}+\\frac12i),"
"z(1)= 3(\\cos(\\frac{\\pi+2\\pi}{6}) + i\\sin(\\frac{\\pi+2\\pi}{6})) = 3(0+i)= 3i,"
"z(2)=3(\\cos(\\frac{\\pi+4\\pi}{6}) + i\\sin(\\frac{\\pi+4\\pi}{6})) = 3(-\\frac{\\sqrt3}{2} +\\frac12i),"
"z(3)=3(\\cos(\\frac{\\pi+6\\pi}{6}) + i\\sin(\\frac{\\pi+6\\pi}{6})) = 3(-\\frac{\\sqrt3}{2} -\\frac12i),"
"z(4)=3(\\cos(\\frac{\\pi+8\\pi}{6}) + i\\sin(\\frac{\\pi+8\\pi}{6})) = 3(0-i) = -3i,"
"z(5)=3(\\cos(\\frac{\\pi+10\\pi}{6}) + i\\sin(\\frac{\\pi+10\\pi}{6})) = 3(\\frac{\\sqrt3}{2} -\\frac12i)."
c) Let us consider "w_1=1+z = (1+\\cos A) + i\\sin A." The modulus of "w_1" is
"\\rho_1=\\sqrt{(1+\\cos A)^2+(\\sin A)^2} = \\sqrt{1+2\\cos A + \\cos^2A + \\sin^2A} = \\sqrt{2+2\\cos A}."
Let us consider "w_2=1+z^2 = (1+ \\cos2A) + i\\sin 2A." The modulus of "w_2" is
"\\rho_2=\\sqrt{(1+\\cos 2A)^2+(\\sin2 A)^2} = \\sqrt{1+2\\cos 2A + \\cos^22A + \\sin^22A} = \\sqrt{2+2\\cos 2A}."
If we use the trigonometric form, the modulus of a product is equal to the product of moduli.
The sum "u^2+v^2" is the squared modulus of "w_1\\cdot w_2," therefore
"u^2+v^2 = \\rho_1^2\\rho_2^2 = (2+2\\cos A)\\cdot(2+2\\cos 2A) = 16(\\dfrac{1+\\cos A}{2})\\cdot(\\dfrac{1+\\cos 2A}{2}) = 16\\cos^2\\frac{A}{2}\\cos^2A."
Next we'll simplify the formula
"u+iv = (1+z)(1+z^2) = 1+z+z^2+z^3."
According to de Moivre's formula,
"1+z+z^2+z^3 = 1+ (\\cos A + i\\sin A) + (\\cos 2A+i\\sin 2A) + (\\cos 3A+i\\sin3A) = (1+\\cos A+ \\cos 2A + \\cos 3A) + i\\cdot(\\sin A+ \\sin2A+\\sin3A)."
Therefore,
"u = 1+\\cos A+ \\cos 2A + \\cos 3A, v=\\sin A+ \\sin2A+\\sin3A."
Using several trigonometric identities, we obtain
"u = 1 + \\cos A+ \\cos 2A + \\cos 3A = 1 + \\cos A + 2\\cos^2A-1+ 4\\cos^3A-3\\cos A= 4\\cos^3A+2\\cos^2A-2\\cos A = 2\\cos A \\cdot(\\cos A+1)\\cdot(2\\cos A -1)."
Next we obtain
"v=\\sin A+ \\sin2A+\\sin3A = \\sin A + 2\\sin A\\cos A + 3\\sin A(1-\\sin^2A) - \\sin^3A = 2 \\cos A\\cdot\\sin A\\cdot( 2\\cos A +1)."
Let us consider "\\tan(3A\/2)":
"\\tan\\dfrac{3A}{2} = \\dfrac{\\sin3A}{1+\\cos3A} = \\dfrac{(2\\cos A+1)\\cdot\\sin A}{(\\cos A+1)\\cdot(2\\cos A-1)}."
We should prove that "v = u \\tan(\\frac{3A}{2})" . Let us substitute the expressions obtained above:
"u\\tan(\\frac{3A}{2}) = 2\\cos A\\cdot(\\cos A +1) \\cdot(2\\cos A - 1) \\cdot \\dfrac{(2\\cos A+1)\\cdot\\sin A}{(\\cos A+1)\\cdot(2\\cos A-1)}= 2\\cos A\\cdot (2\\cos A+1)\\cdot\\sin A = v."
Comments
Leave a comment