Let us assume that w = − p w=-p w = − p , where p p p is a positive real number. Next we use the trigonometric form of complex number
p = ρ ( cos φ + i sin φ ) . p= \rho(\cos\varphi + i\sin\varphi). p = ρ ( cos φ + i sin φ ) .
For positive real numbers φ = 0 \varphi = 0 φ = 0 and ρ = p \rho=p ρ = p , so
p = p ( cos 0 + i sin 0 ) . p = p(\cos 0 + i\sin 0). p = p ( cos 0 + i sin 0 ) .
Therefore
w = − p = − p ( cos 0 + i sin 0 ) = p ( cos π + i sin π ) , w=-p=-p(\cos 0 + i\sin 0) = p(\cos\pi + i\sin\pi), w = − p = − p ( cos 0 + i sin 0 ) = p ( cos π + i sin π ) ,
because cos π = − cos 0 \cos\pi = -\cos 0 cos π = − cos 0 and sin π = sin 0. \sin\pi = \sin 0. sin π = sin 0.
a) Let us assume that
z = ρ ( cos θ + i sin θ ) z = \rho(\cos\theta+i\sin\theta) z = ρ ( cos θ + i sin θ )
According to de Moivre's formula,
z 6 = ρ 6 ( cos ( 6 θ ) + i sin ( 6 θ ) ) z^6 = \rho^6(\cos(6\theta)+i\sin(6\theta)) z 6 = ρ 6 ( cos ( 6 θ ) + i sin ( 6 θ )) .
Since z z z is a 6th root of w w w ,
z 6 = w z^6=w z 6 = w
and
ρ 6 ( cos ( 6 θ ) + i sin ( 6 θ ) ) = p ( cos π + i sin π ) . \rho^6(\cos(6\theta)+i\sin(6\theta)) = p(\cos\pi +i\sin\pi). ρ 6 ( cos ( 6 θ ) + i sin ( 6 θ )) = p ( cos π + i sin π ) .
Therefore we get ρ 6 = p \rho^6=p ρ 6 = p , cos ( 6 θ ) = cos π \cos(6\theta)=\cos\pi cos ( 6 θ ) = cos π , sin ( 6 θ ) = sin π . \sin(6\theta)=\sin\pi. sin ( 6 θ ) = sin π . Then we obtain
ρ = p 1 / 6 , 6 θ = π + 2 π k , k ∈ Z . \rho=p^{1/6},
6\theta=\pi +2\pi k, k \in \mathbb{Z}. ρ = p 1/6 , 6 θ = π + 2 πk , k ∈ Z .
Finally, we get
ρ = p 1 / 6 , θ ( k ) = π + 2 π k 6 , k ∈ Z . \rho=p^{1/6},
\theta(k)=\dfrac{\pi +2\pi k}{6}, k \in \mathbb{Z}. ρ = p 1/6 , θ ( k ) = 6 π + 2 πk , k ∈ Z .
We can see that we will obtain the same sin θ , cos θ \sin\theta, \cos\theta sin θ , cos θ for k ≡ 6 m k\equiv_6 m k ≡ 6 m , so we consider only k = 0 , 1 , … 5. k=0,1,\ldots 5. k = 0 , 1 , … 5.
Next we obtain
z ( k ) = p 1 / 6 ( cos ( π + 2 π k 6 ) + i sin ( π + 2 π k 6 ) ) , k = 0 , … , 5. z(k)=p^{1/6}(\cos(\frac{\pi+2\pi k}{6}) + i\sin(\frac{\pi+2\pi k}{6})), k = 0,\,\ldots, 5. z ( k ) = p 1/6 ( cos ( 6 π + 2 πk ) + i sin ( 6 π + 2 πk )) , k = 0 , … , 5.
b) Here w = − 729 w=-729 w = − 729 . In trigonometric form
w = 729 ( cos π + i sin π ) , w=729(\cos\pi + i\sin\pi), w = 729 ( cos π + i sin π ) ,
according to the formula in a) 6th roots are
z ( k ) = 72 9 1 / 6 ( cos ( π + 2 π k 6 ) + i sin ( π + 2 π k 6 ) ) , k = 0 , … , 5. z(k)= 729^{1/6}(\cos(\frac{\pi+2\pi k}{6}) + i\sin(\frac{\pi+2\pi k}{6})), k = 0,\,\ldots, 5. z ( k ) = 72 9 1/6 ( cos ( 6 π + 2 πk ) + i sin ( 6 π + 2 πk )) , k = 0 , … , 5.
Therefore,
z ( 0 ) = 3 ( cos ( π 6 ) + i sin ( π 6 ) ) = 3 ( 3 2 + 1 2 i ) , z(0)=3(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})) = 3(\frac{\sqrt{3}}{2}+\frac12i), z ( 0 ) = 3 ( cos ( 6 π ) + i sin ( 6 π )) = 3 ( 2 3 + 2 1 i ) ,
z ( 1 ) = 3 ( cos ( π + 2 π 6 ) + i sin ( π + 2 π 6 ) ) = 3 ( 0 + i ) = 3 i , z(1)= 3(\cos(\frac{\pi+2\pi}{6}) + i\sin(\frac{\pi+2\pi}{6})) = 3(0+i)= 3i, z ( 1 ) = 3 ( cos ( 6 π + 2 π ) + i sin ( 6 π + 2 π )) = 3 ( 0 + i ) = 3 i ,
z ( 2 ) = 3 ( cos ( π + 4 π 6 ) + i sin ( π + 4 π 6 ) ) = 3 ( − 3 2 + 1 2 i ) , z(2)=3(\cos(\frac{\pi+4\pi}{6}) + i\sin(\frac{\pi+4\pi}{6})) = 3(-\frac{\sqrt3}{2} +\frac12i), z ( 2 ) = 3 ( cos ( 6 π + 4 π ) + i sin ( 6 π + 4 π )) = 3 ( − 2 3 + 2 1 i ) ,
z ( 3 ) = 3 ( cos ( π + 6 π 6 ) + i sin ( π + 6 π 6 ) ) = 3 ( − 3 2 − 1 2 i ) , z(3)=3(\cos(\frac{\pi+6\pi}{6}) + i\sin(\frac{\pi+6\pi}{6})) = 3(-\frac{\sqrt3}{2} -\frac12i), z ( 3 ) = 3 ( cos ( 6 π + 6 π ) + i sin ( 6 π + 6 π )) = 3 ( − 2 3 − 2 1 i ) ,
z ( 4 ) = 3 ( cos ( π + 8 π 6 ) + i sin ( π + 8 π 6 ) ) = 3 ( 0 − i ) = − 3 i , z(4)=3(\cos(\frac{\pi+8\pi}{6}) + i\sin(\frac{\pi+8\pi}{6})) = 3(0-i) = -3i, z ( 4 ) = 3 ( cos ( 6 π + 8 π ) + i sin ( 6 π + 8 π )) = 3 ( 0 − i ) = − 3 i ,
z ( 5 ) = 3 ( cos ( π + 10 π 6 ) + i sin ( π + 10 π 6 ) ) = 3 ( 3 2 − 1 2 i ) . z(5)=3(\cos(\frac{\pi+10\pi}{6}) + i\sin(\frac{\pi+10\pi}{6})) = 3(\frac{\sqrt3}{2} -\frac12i). z ( 5 ) = 3 ( cos ( 6 π + 10 π ) + i sin ( 6 π + 10 π )) = 3 ( 2 3 − 2 1 i ) .
c) Let us consider w 1 = 1 + z = ( 1 + cos A ) + i sin A . w_1=1+z = (1+\cos A) + i\sin A. w 1 = 1 + z = ( 1 + cos A ) + i sin A . The modulus of w 1 w_1 w 1 is
ρ 1 = ( 1 + cos A ) 2 + ( sin A ) 2 = 1 + 2 cos A + cos 2 A + sin 2 A = 2 + 2 cos A . \rho_1=\sqrt{(1+\cos A)^2+(\sin A)^2} = \sqrt{1+2\cos A + \cos^2A + \sin^2A} = \sqrt{2+2\cos A}. ρ 1 = ( 1 + cos A ) 2 + ( sin A ) 2 = 1 + 2 cos A + cos 2 A + sin 2 A = 2 + 2 cos A .
Let us consider w 2 = 1 + z 2 = ( 1 + cos 2 A ) + i sin 2 A . w_2=1+z^2 = (1+ \cos2A) + i\sin 2A. w 2 = 1 + z 2 = ( 1 + cos 2 A ) + i sin 2 A . The modulus of w 2 w_2 w 2 is
ρ 2 = ( 1 + cos 2 A ) 2 + ( sin 2 A ) 2 = 1 + 2 cos 2 A + cos 2 2 A + sin 2 2 A = 2 + 2 cos 2 A . \rho_2=\sqrt{(1+\cos 2A)^2+(\sin2 A)^2} = \sqrt{1+2\cos 2A + \cos^22A + \sin^22A} = \sqrt{2+2\cos 2A}. ρ 2 = ( 1 + cos 2 A ) 2 + ( sin 2 A ) 2 = 1 + 2 cos 2 A + cos 2 2 A + sin 2 2 A = 2 + 2 cos 2 A .
If we use the trigonometric form, the modulus of a product is equal to the product of moduli.
The sum u 2 + v 2 u^2+v^2 u 2 + v 2 is the squared modulus of w 1 ⋅ w 2 , w_1\cdot w_2, w 1 ⋅ w 2 , therefore
u 2 + v 2 = ρ 1 2 ρ 2 2 = ( 2 + 2 cos A ) ⋅ ( 2 + 2 cos 2 A ) = 16 ( 1 + cos A 2 ) ⋅ ( 1 + cos 2 A 2 ) = 16 cos 2 A 2 cos 2 A . u^2+v^2 = \rho_1^2\rho_2^2 = (2+2\cos A)\cdot(2+2\cos 2A) = 16(\dfrac{1+\cos A}{2})\cdot(\dfrac{1+\cos 2A}{2}) = 16\cos^2\frac{A}{2}\cos^2A. u 2 + v 2 = ρ 1 2 ρ 2 2 = ( 2 + 2 cos A ) ⋅ ( 2 + 2 cos 2 A ) = 16 ( 2 1 + cos A ) ⋅ ( 2 1 + cos 2 A ) = 16 cos 2 2 A cos 2 A .
Next we'll simplify the formula
u + i v = ( 1 + z ) ( 1 + z 2 ) = 1 + z + z 2 + z 3 . u+iv = (1+z)(1+z^2) = 1+z+z^2+z^3. u + i v = ( 1 + z ) ( 1 + z 2 ) = 1 + z + z 2 + z 3 .
According to de Moivre's formula,
1 + z + z 2 + z 3 = 1 + ( cos A + i sin A ) + ( cos 2 A + i sin 2 A ) + ( cos 3 A + i sin 3 A ) = ( 1 + cos A + cos 2 A + cos 3 A ) + i ⋅ ( sin A + sin 2 A + sin 3 A ) . 1+z+z^2+z^3 = 1+ (\cos A + i\sin A) + (\cos 2A+i\sin 2A) + (\cos 3A+i\sin3A) = (1+\cos A+ \cos 2A + \cos 3A) + i\cdot(\sin A+ \sin2A+\sin3A). 1 + z + z 2 + z 3 = 1 + ( cos A + i sin A ) + ( cos 2 A + i sin 2 A ) + ( cos 3 A + i sin 3 A ) = ( 1 + cos A + cos 2 A + cos 3 A ) + i ⋅ ( sin A + sin 2 A + sin 3 A ) .
Therefore,
u = 1 + cos A + cos 2 A + cos 3 A , v = sin A + sin 2 A + sin 3 A . u = 1+\cos A+ \cos 2A + \cos 3A, v=\sin A+ \sin2A+\sin3A. u = 1 + cos A + cos 2 A + cos 3 A , v = sin A + sin 2 A + sin 3 A .
Using several trigonometric identities, we obtain
u = 1 + cos A + cos 2 A + cos 3 A = 1 + cos A + 2 cos 2 A − 1 + 4 cos 3 A − 3 cos A = 4 cos 3 A + 2 cos 2 A − 2 cos A = 2 cos A ⋅ ( cos A + 1 ) ⋅ ( 2 cos A − 1 ) . u = 1 + \cos A+ \cos 2A + \cos 3A = 1 + \cos A + 2\cos^2A-1+ 4\cos^3A-3\cos A= 4\cos^3A+2\cos^2A-2\cos A = 2\cos A \cdot(\cos A+1)\cdot(2\cos A -1). u = 1 + cos A + cos 2 A + cos 3 A = 1 + cos A + 2 cos 2 A − 1 + 4 cos 3 A − 3 cos A = 4 cos 3 A + 2 cos 2 A − 2 cos A = 2 cos A ⋅ ( cos A + 1 ) ⋅ ( 2 cos A − 1 ) .
Next we obtain
v = sin A + sin 2 A + sin 3 A = sin A + 2 sin A cos A + 3 sin A ( 1 − sin 2 A ) − sin 3 A = 2 cos A ⋅ sin A ⋅ ( 2 cos A + 1 ) . v=\sin A+ \sin2A+\sin3A = \sin A + 2\sin A\cos A + 3\sin A(1-\sin^2A) - \sin^3A = 2 \cos A\cdot\sin A\cdot( 2\cos A +1). v = sin A + sin 2 A + sin 3 A = sin A + 2 sin A cos A + 3 sin A ( 1 − sin 2 A ) − sin 3 A = 2 cos A ⋅ sin A ⋅ ( 2 cos A + 1 ) .
Let us consider tan ( 3 A / 2 ) \tan(3A/2) tan ( 3 A /2 ) :
tan 3 A 2 = sin 3 A 1 + cos 3 A = ( 2 cos A + 1 ) ⋅ sin A ( cos A + 1 ) ⋅ ( 2 cos A − 1 ) . \tan\dfrac{3A}{2} = \dfrac{\sin3A}{1+\cos3A} = \dfrac{(2\cos A+1)\cdot\sin A}{(\cos A+1)\cdot(2\cos A-1)}. tan 2 3 A = 1 + cos 3 A sin 3 A = ( cos A + 1 ) ⋅ ( 2 cos A − 1 ) ( 2 cos A + 1 ) ⋅ sin A .
We should prove that v = u tan ( 3 A 2 ) v = u \tan(\frac{3A}{2}) v = u tan ( 2 3 A ) . Let us substitute the expressions obtained above:
u tan ( 3 A 2 ) = 2 cos A ⋅ ( cos A + 1 ) ⋅ ( 2 cos A − 1 ) ⋅ ( 2 cos A + 1 ) ⋅ sin A ( cos A + 1 ) ⋅ ( 2 cos A − 1 ) = 2 cos A ⋅ ( 2 cos A + 1 ) ⋅ sin A = v . u\tan(\frac{3A}{2}) = 2\cos A\cdot(\cos A +1) \cdot(2\cos A - 1) \cdot \dfrac{(2\cos A+1)\cdot\sin A}{(\cos A+1)\cdot(2\cos A-1)}= 2\cos A\cdot (2\cos A+1)\cdot\sin A = v. u tan ( 2 3 A ) = 2 cos A ⋅ ( cos A + 1 ) ⋅ ( 2 cos A − 1 ) ⋅ ( cos A + 1 ) ⋅ ( 2 cos A − 1 ) ( 2 cos A + 1 ) ⋅ sin A = 2 cos A ⋅ ( 2 cos A + 1 ) ⋅ sin A = v .
Comments