Question #113665
Let w be a negative real number, z a 6th root of w.

a) Show that z(k) = p^1/6 [cos ( pi + 2 * k* pi / 6) + i sin ( pi + 12 * k * pi / 6)], k = v, 1,2,3,4,5 is a formula for the 6th roots of w.

b) Hence determine 6th roots of - 729.

c) Given z = cosA + i sin A and u + iv = (1+z) (1+ z^2). Prove that v = u tan(3A/2), u^2 + v^2 = 16 cos ^2(A/2) cos^2A
1
Expert's answer
2020-05-04T19:19:46-0400

Let us assume that w=pw=-p, where pp is a positive real number. Next we use the trigonometric form of complex number

p=ρ(cosφ+isinφ).p= \rho(\cos\varphi + i\sin\varphi).

For positive real numbers φ=0\varphi = 0 and ρ=p\rho=p , so

p=p(cos0+isin0).p = p(\cos 0 + i\sin 0).

Therefore

w=p=p(cos0+isin0)=p(cosπ+isinπ),w=-p=-p(\cos 0 + i\sin 0) = p(\cos\pi + i\sin\pi),

because cosπ=cos0\cos\pi = -\cos 0 and sinπ=sin0.\sin\pi = \sin 0.

a) Let us assume that

z=ρ(cosθ+isinθ)z = \rho(\cos\theta+i\sin\theta)

According to de Moivre's formula,

z6=ρ6(cos(6θ)+isin(6θ))z^6 = \rho^6(\cos(6\theta)+i\sin(6\theta)).

Since zz is a 6th root of ww,

z6=wz^6=w

and

ρ6(cos(6θ)+isin(6θ))=p(cosπ+isinπ).\rho^6(\cos(6\theta)+i\sin(6\theta)) = p(\cos\pi +i\sin\pi).

Therefore we get ρ6=p\rho^6=p , cos(6θ)=cosπ\cos(6\theta)=\cos\pi , sin(6θ)=sinπ.\sin(6\theta)=\sin\pi. Then we obtain

ρ=p1/6,6θ=π+2πk,kZ.\rho=p^{1/6}, 6\theta=\pi +2\pi k, k \in \mathbb{Z}.

Finally, we get

ρ=p1/6,θ(k)=π+2πk6,kZ.\rho=p^{1/6}, \theta(k)=\dfrac{\pi +2\pi k}{6}, k \in \mathbb{Z}.

We can see that we will obtain the same sinθ,cosθ\sin\theta, \cos\theta for k6mk\equiv_6 m , so we consider only k=0,1,5.k=0,1,\ldots 5.

Next we obtain

z(k)=p1/6(cos(π+2πk6)+isin(π+2πk6)),k=0,,5.z(k)=p^{1/6}(\cos(\frac{\pi+2\pi k}{6}) + i\sin(\frac{\pi+2\pi k}{6})), k = 0,\,\ldots, 5.

b) Here w=729w=-729 . In trigonometric form

w=729(cosπ+isinπ),w=729(\cos\pi + i\sin\pi),

according to the formula in a) 6th roots are

z(k)=7291/6(cos(π+2πk6)+isin(π+2πk6)),k=0,,5.z(k)= 729^{1/6}(\cos(\frac{\pi+2\pi k}{6}) + i\sin(\frac{\pi+2\pi k}{6})), k = 0,\,\ldots, 5.

Therefore,

z(0)=3(cos(π6)+isin(π6))=3(32+12i),z(0)=3(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})) = 3(\frac{\sqrt{3}}{2}+\frac12i),

z(1)=3(cos(π+2π6)+isin(π+2π6))=3(0+i)=3i,z(1)= 3(\cos(\frac{\pi+2\pi}{6}) + i\sin(\frac{\pi+2\pi}{6})) = 3(0+i)= 3i,

z(2)=3(cos(π+4π6)+isin(π+4π6))=3(32+12i),z(2)=3(\cos(\frac{\pi+4\pi}{6}) + i\sin(\frac{\pi+4\pi}{6})) = 3(-\frac{\sqrt3}{2} +\frac12i),

z(3)=3(cos(π+6π6)+isin(π+6π6))=3(3212i),z(3)=3(\cos(\frac{\pi+6\pi}{6}) + i\sin(\frac{\pi+6\pi}{6})) = 3(-\frac{\sqrt3}{2} -\frac12i),

z(4)=3(cos(π+8π6)+isin(π+8π6))=3(0i)=3i,z(4)=3(\cos(\frac{\pi+8\pi}{6}) + i\sin(\frac{\pi+8\pi}{6})) = 3(0-i) = -3i,

z(5)=3(cos(π+10π6)+isin(π+10π6))=3(3212i).z(5)=3(\cos(\frac{\pi+10\pi}{6}) + i\sin(\frac{\pi+10\pi}{6})) = 3(\frac{\sqrt3}{2} -\frac12i).

c) Let us consider w1=1+z=(1+cosA)+isinA.w_1=1+z = (1+\cos A) + i\sin A. The modulus of w1w_1 is

ρ1=(1+cosA)2+(sinA)2=1+2cosA+cos2A+sin2A=2+2cosA.\rho_1=\sqrt{(1+\cos A)^2+(\sin A)^2} = \sqrt{1+2\cos A + \cos^2A + \sin^2A} = \sqrt{2+2\cos A}.

Let us consider w2=1+z2=(1+cos2A)+isin2A.w_2=1+z^2 = (1+ \cos2A) + i\sin 2A. The modulus of w2w_2 is

ρ2=(1+cos2A)2+(sin2A)2=1+2cos2A+cos22A+sin22A=2+2cos2A.\rho_2=\sqrt{(1+\cos 2A)^2+(\sin2 A)^2} = \sqrt{1+2\cos 2A + \cos^22A + \sin^22A} = \sqrt{2+2\cos 2A}.

If we use the trigonometric form, the modulus of a product is equal to the product of moduli.

The sum u2+v2u^2+v^2 is the squared modulus of w1w2,w_1\cdot w_2, therefore

u2+v2=ρ12ρ22=(2+2cosA)(2+2cos2A)=16(1+cosA2)(1+cos2A2)=16cos2A2cos2A.u^2+v^2 = \rho_1^2\rho_2^2 = (2+2\cos A)\cdot(2+2\cos 2A) = 16(\dfrac{1+\cos A}{2})\cdot(\dfrac{1+\cos 2A}{2}) = 16\cos^2\frac{A}{2}\cos^2A.

Next we'll simplify the formula

u+iv=(1+z)(1+z2)=1+z+z2+z3.u+iv = (1+z)(1+z^2) = 1+z+z^2+z^3.

According to de Moivre's formula,

1+z+z2+z3=1+(cosA+isinA)+(cos2A+isin2A)+(cos3A+isin3A)=(1+cosA+cos2A+cos3A)+i(sinA+sin2A+sin3A).1+z+z^2+z^3 = 1+ (\cos A + i\sin A) + (\cos 2A+i\sin 2A) + (\cos 3A+i\sin3A) = (1+\cos A+ \cos 2A + \cos 3A) + i\cdot(\sin A+ \sin2A+\sin3A).

Therefore,

u=1+cosA+cos2A+cos3A,v=sinA+sin2A+sin3A.u = 1+\cos A+ \cos 2A + \cos 3A, v=\sin A+ \sin2A+\sin3A.

Using several trigonometric identities, we obtain

u=1+cosA+cos2A+cos3A=1+cosA+2cos2A1+4cos3A3cosA=4cos3A+2cos2A2cosA=2cosA(cosA+1)(2cosA1).u = 1 + \cos A+ \cos 2A + \cos 3A = 1 + \cos A + 2\cos^2A-1+ 4\cos^3A-3\cos A= 4\cos^3A+2\cos^2A-2\cos A = 2\cos A \cdot(\cos A+1)\cdot(2\cos A -1).

Next we obtain

v=sinA+sin2A+sin3A=sinA+2sinAcosA+3sinA(1sin2A)sin3A=2cosAsinA(2cosA+1).v=\sin A+ \sin2A+\sin3A = \sin A + 2\sin A\cos A + 3\sin A(1-\sin^2A) - \sin^3A = 2 \cos A\cdot\sin A\cdot( 2\cos A +1).

Let us consider tan(3A/2)\tan(3A/2):

tan3A2=sin3A1+cos3A=(2cosA+1)sinA(cosA+1)(2cosA1).\tan\dfrac{3A}{2} = \dfrac{\sin3A}{1+\cos3A} = \dfrac{(2\cos A+1)\cdot\sin A}{(\cos A+1)\cdot(2\cos A-1)}.

We should prove that v=utan(3A2)v = u \tan(\frac{3A}{2}) . Let us substitute the expressions obtained above:

utan(3A2)=2cosA(cosA+1)(2cosA1)(2cosA+1)sinA(cosA+1)(2cosA1)=2cosA(2cosA+1)sinA=v.u\tan(\frac{3A}{2}) = 2\cos A\cdot(\cos A +1) \cdot(2\cos A - 1) \cdot \dfrac{(2\cos A+1)\cdot\sin A}{(\cos A+1)\cdot(2\cos A-1)}= 2\cos A\cdot (2\cos A+1)\cdot\sin A = v.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS