Let us assume that w=−p, where p is a positive real number. Next we use the trigonometric form of complex number
p=ρ(cosφ+isinφ).
For positive real numbers φ=0 and ρ=p , so
p=p(cos0+isin0).
Therefore
w=−p=−p(cos0+isin0)=p(cosπ+isinπ),
because cosπ=−cos0 and sinπ=sin0.
a) Let us assume that
z=ρ(cosθ+isinθ)
According to de Moivre's formula,
z6=ρ6(cos(6θ)+isin(6θ)).
Since z is a 6th root of w,
z6=w
and
ρ6(cos(6θ)+isin(6θ))=p(cosπ+isinπ).
Therefore we get ρ6=p , cos(6θ)=cosπ , sin(6θ)=sinπ. Then we obtain
ρ=p1/6,6θ=π+2πk,k∈Z.
Finally, we get
ρ=p1/6,θ(k)=6π+2πk,k∈Z.
We can see that we will obtain the same sinθ,cosθ for k≡6m , so we consider only k=0,1,…5.
Next we obtain
z(k)=p1/6(cos(6π+2πk)+isin(6π+2πk)),k=0,…,5.
b) Here w=−729 . In trigonometric form
w=729(cosπ+isinπ),
according to the formula in a) 6th roots are
z(k)=7291/6(cos(6π+2πk)+isin(6π+2πk)),k=0,…,5.
Therefore,
z(0)=3(cos(6π)+isin(6π))=3(23+21i),
z(1)=3(cos(6π+2π)+isin(6π+2π))=3(0+i)=3i,
z(2)=3(cos(6π+4π)+isin(6π+4π))=3(−23+21i),
z(3)=3(cos(6π+6π)+isin(6π+6π))=3(−23−21i),
z(4)=3(cos(6π+8π)+isin(6π+8π))=3(0−i)=−3i,
z(5)=3(cos(6π+10π)+isin(6π+10π))=3(23−21i).
c) Let us consider w1=1+z=(1+cosA)+isinA. The modulus of w1 is
ρ1=(1+cosA)2+(sinA)2=1+2cosA+cos2A+sin2A=2+2cosA.
Let us consider w2=1+z2=(1+cos2A)+isin2A. The modulus of w2 is
ρ2=(1+cos2A)2+(sin2A)2=1+2cos2A+cos22A+sin22A=2+2cos2A.
If we use the trigonometric form, the modulus of a product is equal to the product of moduli.
The sum u2+v2 is the squared modulus of w1⋅w2, therefore
u2+v2=ρ12ρ22=(2+2cosA)⋅(2+2cos2A)=16(21+cosA)⋅(21+cos2A)=16cos22Acos2A.
Next we'll simplify the formula
u+iv=(1+z)(1+z2)=1+z+z2+z3.
According to de Moivre's formula,
1+z+z2+z3=1+(cosA+isinA)+(cos2A+isin2A)+(cos3A+isin3A)=(1+cosA+cos2A+cos3A)+i⋅(sinA+sin2A+sin3A).
Therefore,
u=1+cosA+cos2A+cos3A,v=sinA+sin2A+sin3A.
Using several trigonometric identities, we obtain
u=1+cosA+cos2A+cos3A=1+cosA+2cos2A−1+4cos3A−3cosA=4cos3A+2cos2A−2cosA=2cosA⋅(cosA+1)⋅(2cosA−1).
Next we obtain
v=sinA+sin2A+sin3A=sinA+2sinAcosA+3sinA(1−sin2A)−sin3A=2cosA⋅sinA⋅(2cosA+1).
Let us consider tan(3A/2):
tan23A=1+cos3Asin3A=(cosA+1)⋅(2cosA−1)(2cosA+1)⋅sinA.
We should prove that v=utan(23A) . Let us substitute the expressions obtained above:
utan(23A)=2cosA⋅(cosA+1)⋅(2cosA−1)⋅(cosA+1)⋅(2cosA−1)(2cosA+1)⋅sinA=2cosA⋅(2cosA+1)⋅sinA=v.
Comments