De Moivres theorem states that if z=r cosA+ i r sinA
then, zn = cos (nA) + i sin (nA)
so, using de moivres theorem, (cosA + i sinA)5 = cos(5A) + i sin(5A)
using binomial theorem ,
cos(5A) + i sin(5A) = (cosA)5 - 10 cos3A sin2A + 5 cosA sin4A + i( 5cos4A sinA + 10 cos2A sin3A + sin5A)
comparing both sides,
cos(5A) = (cosA)5 - 10 cos3A sin2A + 5 cosA sin4A
using sin2x + cos2x = 1
cos(5A) = 16 cos5A - 20 cos3A + 5 cosA equation1
sin(5A) = 5cos4A sinA + 10 cos2A sin3A + sin5A
using sin2x + cos2x = 1
sin(5A) = 16 sin5A - 20 sin3A + 5 sinA equation2
now, let y=(Π /5 ) ,x= cosy in equation 1
-1 = 16 x5 - 20x3 + 5x +1
(x+1)[x- (1-"\\sqrt{\\smash[b]{5}}\n\n)\/4" )[(x-(1+"\\sqrt{\\smash[b]{5}})\/4" ]=0
since cos(Π /5) lies between 0 and 1
so,cos( Π/5) = (("\\sqrt{5}" +1)/4)
let y= (Π /5) and x= siny in equation2
16 x4 - 20 x2 + 5 = 0
x = "\\mp \\sqrt{\\smash[b]{(5 \\mp \\sqrt{\\smash[b]{5}})\/8}}"
since sin(Π/5) lies between 0 and "\\sqrt{\\smash[b]{3}}" /2
sin( Π /5) = "\\sqrt{\\smash[b]{(5-\\sqrt{\\smash[b]{5}})\/8}}"
similarly, if y = 2"\\Pi" /5 and x=siny in equation2 and sin(2"\\Pi" /5) lies between "\\sqrt{\\smash[b]{3}}" /2 and 1,
so sin(2"\\Pi" /5) = "\\sqrt{\\smash[b]{(5+\\sqrt{\\smash[b]{5}})\/8}}"
Comments
Leave a comment