De Moivre's Theorem:
For any complex number "z=r(\\cos \\theta +i \\sin \\theta)" and any integer "n",
"z^n=r^n(\\cos (n\\theta)+i \\sin(n\\theta))"
We will consider "z=\\cos A+i \\sin A"
"z^5=\\cos 5A+i \\sin 5A"
"z^5=(\\cos A+i \\sin A)^5=\\cos^5A+5\\cos ^4 A(i \\sin A)+10\\cos ^3 A(i \\sin A)^2+10\\cos ^2A(i \\sin A)^3+5\\cos A(i\\sin A)^4+(i \\sin A)^5=(\\cos ^5A-10\\cos ^3 A\\sin^2 A+5\\cos A\\sin^4A)+i(5\\cos^4 A\\sin A-10\\cos^2 A\\sin ^3 A+\\sin^5A)"
Therefore, "\\cos 5A= \\cos ^5A-10\\cos ^3 A\\sin^2 A+5\\cos A\\sin^4A"
"z^4=\\cos 4A+i \\sin 4A"
"z^4=(\\cos A+i \\sin A)^4=\\cos ^4A+4\\cos ^3A(i\\sin A)+6\\cos^2 A(i\\sin A)^2+4\\cos A(i \\sin A)^3+(i\\sin A)^4=(\\cos^4A-6\\cos^2 A\\sin^2A+\\sin^4A)+i(4\\cos ^3A\\sin A-4\\cos A\\sin^3A)"
Therefore, "\\sin 4A= 4\\cos ^3A\\sin A-4\\cos A\\sin^3A"
Answer: "\\cos 5A= \\cos ^5A-10\\cos ^3 A\\sin^2 A+5\\cos A\\sin^4A"
"\\sin 4A= 4\\cos ^3A\\sin A-4\\cos A\\sin^3A"
Comments
Leave a comment