Given : "(\\sin\\theta+\\cos\\theta)(1-\\sin\\theta\\cos\\theta)=\\sin^3\\theta+\\cos^3\\theta"
Important:
Calculations
1)."\\qquad\n\\begin{aligned}\n\\small\\sin^3\\theta+\\cos^3\\theta&=\\small(\\sin\\theta+\\cos\\theta)(\\sin^2\\theta-\\sin\\theta\\cos\\theta+\\cos^2\\theta)\\\\\n&=\\small(\\sin\\theta+\\cos\\theta)(1-\\sin\\theta\\cos\\theta)\\cdots\\cdots\\cdots(\\because\\sin^2\\theta+\\cos^2\\theta=1)\\\\\n\\end{aligned}"
Therefore, the above identity is proved.
2). Now it can be written that, "\\small\\sin^3\\theta+\\cos^3\\theta = \\small 3\\cos^3\\theta"
"\\qquad\n\\begin{aligned}\n\\therefore\\,\\small \\sin^3\\theta&= \\small 2\\cos^3\\theta\\\\\n\\small \\tan^3\\theta& = \\small 2 \\cdots\\cdots (division \\,by\\, \\cos^3\\theta) \\\\\n \\small \\tan\\theta&= \\small 2^{\\frac{1}{3}}\\\\\n\\small \\text{but,} \\, \\tan\\theta&= \\small \\tan(180+\\theta)=\\small 2^{\\frac{1}{3}}\\cdots\\cdots(\\because\\, 0\\degree<=\\theta<=360\\degree)\\\\\n\\small \\therefore \\theta&= \\small \\tan^{-1}(2^\\frac{1}{3})\\\\\n&= \\small \\bold{51.56\\degree}\\\\\n\\small 180\\degree+\\theta &= \\small \\bold{231.56\\degree}\\\\\n\\end{aligned}"
Comments
Leave a comment