"z=\\cos A+i\\sin A"
the Moivre formula
"z^n=\\cos nA+i\\sin nA\\\\\nz^{-n}=\\frac{1}{z^n}=\\frac{1}{\\cos nA+i\\sin nA}=\\\\\n=\\frac{\\cos nA-i\\sin nA}{(\\cos nA+i\\sin nA)(\\cos nA-i\\sin nA)}=\\cos nA-i\\sin nA"
1)
"z^n+z^{-n}=\\\\\n=\\cos nA+i\\sin nA+\\cos nA-i\\sin nA=\\\\=2\\cos nA\\\\\nz^n-z^{-n}=\\\\\n=\\cos nA+i\\sin nA-\\cos nA+i\\sin nA=\\\\=2i\\sin nA"
2)
"z+z^{-1}=2\\cos A\\\\\n2\\cos A=(z+\\frac{1}{z})\\\\\n(2\\cos A)^n=(z+\\frac{1}{z})^n\\\\\n2^n\\cos^n A=(z+\\frac{1}{z})^n\\\\\n\\\\\nz-z^{-1}=2i\\sin A\\\\\n2i\\sin A=(z-\\frac{1}{z})\\\\\n(2i\\sin A)^n=(z-\\frac{1}{z})^n\\\\\n(2i)^n\\sin^n A=(z-\\frac{1}{z})^n"
3)
"\\sin^nA=\\frac{(z-z^{-1})^n}{(2i)^n}\\\\\n\\sin^7A=\\frac{(z-z^{-1})^7}{(2i)^7}=\\frac{1}{2^7i^7}(z^7-7z^6z^{-1}+\\\\\n+21z^5z^{-2}-35z^4z^{-3}+35z^3z^{-4}-21z^2z^{-5}+\\\\\n+7zz^{-6}-z^{-7})=\\\\\n=\\frac{1}{128(-i)}(z^7-z^{-7}-7(z^5-z^{-5})+\\\\\n+21(z^3-z^{-3})-35(z-z^{-1}))=\\\\\n=\\frac{i}{128(-i)}(2i\\sin7A-7\\cdot2i\\sin5A+\\\\\n+21\\cdot2i\\sin3A-35\\cdot2i\\sin A)=-\\frac{2i}{128i}(\\sin7A-\\\\\n-7\\sin5A+21\\sin3A-35\\sin A)=\\\\\n=-\\frac{1}{64}(\\sin7A-7\\sin5A+21\\sin3A-35\\sin A)"
"i^7=i^4\\cdot i^3=1\\cdot(-i)=-i\\\\\ni^4=(i^2)^2=(-1)^2=1\\\\\ni^3=i^2\\cdot i=-1\\cdot i=-i"
4)
"\\cos^nA=\\frac{(z+z^{-1})^n}{2^n}\\\\\n\\cos^3A=\\frac{(z+z^{-1})^3}{2^3}=\\frac{1}{8}(z^3+3z^2z^{-1}+\\\\\n+3zz^{-2}+z^{-3})=\\\\\n=\\frac{1}{8}(z^3+z^{-3}+3(z+z^{-1})=\\\\\n=\\frac{1}{8}(2\\cos3A+3\\cdot2\\cos A)=\\\\\n=\\frac{1}{4}(\\cos3A+3\\cos A)\\\\\n\\sin^nA=\\frac{(z-z^{-1})^n}{(2i)^n}\\\\\n\\sin^4A=\\frac{(z-z^{-1})^4}{(2i)^4}=\\frac{1}{16}(z^4-4z^3z^{-1}+\\\\\n+6z^2z^{-2}-4zz^{-3}+z^{-4})=\\\\\n=\\frac{1}{16}(z^4+z^{-4}-4(z^2+z^{-2})+6)=\\\\\n=\\frac{1}{16}(2\\cos4A-4\\cdot2\\cos 2A+6)=\\\\\n=\\frac{1}{8}(\\cos4A-4\\cos2A+3)"
5)
"4x=\\cos 3A+3\\cos A\\\\\n\\cos^3A=\\frac{1}{4}(\\cos3A+3\\cos A)\\\\\n\\cos3A=4\\cos^3A-3\\cos A\\\\\n4x=4\\cos^3A-3\\cos A+3\\cos A\\\\\nx=\\cos^3A"
"4y=3\\sin A-\\sin3A\\\\\n\\sin^3A=\\frac{(z-z^{-1})^3}{(2i)^3}=-\\frac{1}{8i}(z^3-3z^2z^{-1}+\\\\\n+3zz^{-2}-z^{-3})=\\\\\n=-\\frac{1}{8i}(z^3-z^{-3}-3(z-z^{-1})=\\\\\n=-\\frac{1}{8i}(2i\\sin3A-3\\cdot(2i)\\sin A)=\\\\\n=-\\frac{1}{4}(\\sin3A-3\\sin A)\\\\\n\\sin 3A=3\\sin A-4\\sin^3A\\\\\n4y=3\\sin A-3\\sin A+4\\sin^3A\\\\\ny=\\sin^3A"
Comments
Leave a comment