Question #341625

1. The probability distribution below shows the number of typing errors (x) and the probability p(x) of committing these errors whenever clerks type-in a document. Compute the variance and standard deviation.

y


1

2

3

4

5

P(y)

0.02

0.11

0.42

0.31

0.10

0.04

2. The probability distribution below shows the random variable and the probability of tossing a die. What is the variance and standard deviation?

z

1

2

3

4

5

6

P(z)

1/6

1/6

1/6

1/6

1/6

1/6

must include solution

 


1
Expert's answer
2022-05-17T23:14:05-0400

1.


y012345p(y)0.020.110.420.310.100.04\def\arraystretch{1.5} \begin{array}{c:c} y & 0 & 1 & 2 & 3 & 4 & 5\\ \hline p(y) & 0.02 & 0.11 & 0.42 & 0.31 & 0.10 & 0.04 \\ \end{array}

Check


ip(yi)=0.02+0.11+0.42+0.31\sum _ip(y_i)=0.02+0.11+0.42+0.31

+0.10+0.04=1,True+0.10+0.04=1, True

E(Y)=0.02(0)+0.11(1)+0.42(2)E(Y)=0.02(0)+0.11(1)+0.42(2)

+0.31(3)+0.10(4)+0.04(5)=2.48+0.31(3)+0.10(4)+0.04(5)=2.48

E(Y2)=0.02(0)2+0.11(1)2+0.42(2)2E(Y^2)=0.02(0)^2+0.11(1)^2+0.42(2)^2

+0.31(3)2+0.10(4)2+0.04(5)2=7.18+0.31(3)^2+0.10(4)^2+0.04(5)^2=7.18

Var(Y)=σ2=E(Y2)(E(Y))2Var(Y)=\sigma^2=E(Y^2)-(E(Y))^2

=7.18(2.48)2=1.0296=7.18-(2.48)^2=1.0296

σ=σ2=1.02961.014692\sigma=\sqrt{\sigma^2}=\sqrt{1.0296}\approx1.014692

2.


z123456p(z)1/61/61/61/61/61/6\def\arraystretch{1.5} \begin{array}{c:c} z & 1 & 2 & 3 & 4 & 5 & 6\\ \hline p(z) & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ \end{array}

Check


ip(zi)=16+16+16+16+16+16=1,True\sum _ip(z_i)=\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}=1,True

E(Z)=16(1)+16(2)+16(3)E(Z)=\dfrac{1}{6}(1)+\dfrac{1}{6}(2)+\dfrac{1}{6}(3)

+16(4)+16(5)+16(6)=72+\dfrac{1}{6}(4)+\dfrac{1}{6}(5)+\dfrac{1}{6}(6)=\dfrac{7}{2}

E(Z2)=16(1)2+16(2)2+16(3)2E(Z^2)=\dfrac{1}{6}(1)^2+\dfrac{1}{6}(2)^2+\dfrac{1}{6}(3)^2

16(4)2+16(5)2+16(6)2=916\dfrac{1}{6}(4)^2+\dfrac{1}{6}(5)^2+\dfrac{1}{6}(6)^2=\dfrac{91}{6}

Var(Z)=σ2=E(Z2)(E(Z))2Var(Z)=\sigma^2=E(Z^2)-(E(Z))^2

=916(72)2=35122.916667=\dfrac{91}{6}-(\dfrac{7}{2})^2=\dfrac{35}{12}\approx2.916667

σ=σ2=35121.707825\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{35}{12}}\approx1.707825


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS