1. The probability distribution below shows the number of typing errors (x) and the probability p(x) of committing these errors whenever clerks type-in a document. Compute the variance and standard deviation.
y
1
2
3
4
5
P(y)
0.02
0.11
0.42
0.31
0.10
0.04
2. The probability distribution below shows the random variable and the probability of tossing a die. What is the variance and standard deviation?
z
1
2
3
4
5
6
P(z)
1/6
1/6
1/6
1/6
1/6
1/6
must include solution
1.
Check
"+0.10+0.04=1, True"
"E(Y)=0.02(0)+0.11(1)+0.42(2)"
"+0.31(3)+0.10(4)+0.04(5)=2.48"
"E(Y^2)=0.02(0)^2+0.11(1)^2+0.42(2)^2"
"+0.31(3)^2+0.10(4)^2+0.04(5)^2=7.18"
"Var(Y)=\\sigma^2=E(Y^2)-(E(Y))^2"
"=7.18-(2.48)^2=1.0296"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{1.0296}\\approx1.014692"
2.
Check
"E(Z)=\\dfrac{1}{6}(1)+\\dfrac{1}{6}(2)+\\dfrac{1}{6}(3)"
"+\\dfrac{1}{6}(4)+\\dfrac{1}{6}(5)+\\dfrac{1}{6}(6)=\\dfrac{7}{2}"
"E(Z^2)=\\dfrac{1}{6}(1)^2+\\dfrac{1}{6}(2)^2+\\dfrac{1}{6}(3)^2"
"\\dfrac{1}{6}(4)^2+\\dfrac{1}{6}(5)^2+\\dfrac{1}{6}(6)^2=\\dfrac{91}{6}"
"Var(Z)=\\sigma^2=E(Z^2)-(E(Z))^2"
"=\\dfrac{91}{6}-(\\dfrac{7}{2})^2=\\dfrac{35}{12}\\approx2.916667"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{\\dfrac{35}{12}}\\approx1.707825"
Comments
Leave a comment