Question #341588

You are given a population of 3 elements , which are 3,4,5. Suppose all possible samples of size 2 are drawn from the population with replacement, compute for the following;



Mean of the sample means;



Variance of the sample means; and standard deviation of the sample means

1
Expert's answer
2022-05-17T23:09:18-0400

We have population values 3,4,5, population size N=3 and sample size n=2.

Mean of population (μ)(\mu) = 3+4+53=4\dfrac{3+4+5}{3}=4

Variance of population 


σ2=Σ(xixˉ)2n=1+0+13=23\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1+0+1}{3}=\dfrac{2}{3}


σ=σ2=230.8165\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{2}{3}}\approx0.8165

Select a random sample of size 2 withreplacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn with replacement is Nn=32=9N^n=3^2=9

noSampleSamplemean (xˉ)13,36/223,47/233,58/244,37/254,48/264,59/275,38/285,49/295,510/2\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 3,3 & 6/2 \\ \hdashline 2 & 3,4& 7/2 \\ \hdashline 3 & 3,5 & 8/2 \\ \hdashline 4 & 4,3 & 7/2 \\ \hdashline 5 & 4,4 & 8/2 \\ \hdashline 6 & 4,5 & 9/2 \\ \hdashline 7 & 5,3 & 8/2 \\ \hdashline 8 & 5,4 & 9/2 \\ \hdashline 9 & 5,5 & 10/2 \\ \hdashline \end{array}





Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)6/21/96/1836/367/22/914/1898/368/23/924/18192/369/22/918/18162/3610/21/910/18100/36\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 6/2 & 1/9 & 6/18 & 36/36 \\ \hdashline 7/2 & 2/9 & 14/18 & 98/36\\ \hdashline 8/2 & 3/9 & 24/18 & 192/36 \\ \hdashline 9/2 & 2/9 & 18/18 & 162/36 \\ \hdashline 10/2 & 1/9 & 10/18 & 100/36 \\ \hdashline \end{array}



Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=7218=4=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{72}{18}=4=\mu



The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=58836(4)2=13=σ2n=\dfrac{588}{36}-(4)^2= \dfrac{1}{3}= \dfrac{\sigma^2}{n}

σXˉ=130.57735\sigma_{\bar{X}}=\sqrt{\dfrac{1}{3}}\approx0.57735


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS