We have population values 0,1,2,6,8, population size N=5 and sample size n=2.
Mean of population ( μ ) (\mu) ( μ ) = 0 + 1 + 2 + 6 + 8 5 = 3.4 \dfrac{0+1+2+6+8}{5}=3.4 5 0 + 1 + 2 + 6 + 8 = 3.4
Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 N = 1 5 ( 11.56 + 5.76 + 1.96 \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{N}=\dfrac{1}{5}(11.56+5.76+1.96 σ 2 = N Σ ( x i − x ˉ ) 2 = 5 1 ( 11.56 + 5.76 + 1.96
+ 6.76 + 21.16 = 9.44 +6.76+21.16=9.44 + 6.76 + 21.16 = 9.44
σ = σ 2 = 9.44 ≈ 3.072458 \sigma=\sqrt{\sigma^2}=\sqrt{9.44}\approx3.072458 σ = σ 2 = 9.44 ≈ 3.072458
The number of possible samples which can be drawn without replacement is N C n = 5 C 2 = 10. ^{N}C_n=^{5}C_2=10. N C n = 5 C 2 = 10.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 0 , 1 1 / 2 2 0 , 2 2 / 2 3 0 , 6 6 / 2 4 0 , 8 8 / 2 5 1 , 2 3 / 2 6 1 , 6 7 / 2 7 1 , 8 9 / 2 8 2 , 6 8 / 2 9 2 , 8 10 / 2 10 6 , 8 14 / 2 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 0,1 & 1/2 \\
\hdashline
2 & 0,2 & 2/2 \\
\hdashline
3 & 0,6 & 6/2\\
\hdashline
4 & 0,8 & 8/2 \\
\hdashline
5 & 1,2 & 3/2 \\
\hdashline
6 & 1,6 & 7/2 \\
\hdashline
7 & 1,8 & 9/2 \\
\hdashline
8 & 2,6 & 8/2 \\
\hdashline
9 & 2,8 & 10/2 \\
\hdashline
10 & 6,8 & 14/2 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 7 8 9 10 S am pl e 0 , 1 0 , 2 0 , 6 0 , 8 1 , 2 1 , 6 1 , 8 2 , 6 2 , 8 6 , 8 S am pl e m e an ( x ˉ ) 1/2 2/2 6/2 8/2 3/2 7/2 9/2 8/2 10/2 14/2
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 1 / 2 1 / 10 1 / 20 1 / 40 2 / 2 1 / 10 2 / 20 4 / 40 3 / 2 1 / 10 3 / 20 9 / 40 6 / 2 1 / 10 6 / 20 36 / 40 7 / 2 1 / 10 7 / 20 49 / 40 8 / 2 2 / 10 16 / 20 128 / 40 9 / 2 1 / 10 9 / 20 81 / 40 10 / 2 1 / 10 10 / 20 100 / 40 14 / 2 1 / 10 14 / 20 196 / 40 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X})& \bar{X}^2f(\bar{X})
\\ \hline
1/2 & 1/10 & 1/20 & 1/40 \\
\hdashline
2/2 & 1/10 & 2/20 & 4/40 \\
\hdashline
3/2& 1/10 & 3/20 & 9/40 \\
\hdashline
6/2 & 1/10 & 6/20 & 36/40 \\
\hdashline
7/2 & 1/10 & 7/20 & 49/40 \\
\hdashline
8/2 & 2/10 & 16/20 & 128/40 \\
\hdashline
9/2 & 1/10 & 9/20 & 81/40 \\
\hdashline
10/2 & 1/10 & 10/20 & 100/40 \\
\hdashline
14/2 & 1/10 & 14/20 & 196/40 \\
\hdashline
\end{array} X ˉ 1/2 2/2 3/2 6/2 7/2 8/2 9/2 10/2 14/2 f ( X ˉ ) 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 X ˉ f ( X ˉ ) 1/20 2/20 3/20 6/20 7/20 16/20 9/20 10/20 14/20 X ˉ 2 f ( X ˉ ) 1/40 4/40 9/40 36/40 49/40 128/40 81/40 100/40 196/40
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 68 20 = 3.4 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{68}{20}=3.4=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 20 68 = 3.4 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 604 40 − ( 3.4 ) 2 = 3.54 = σ 2 n ( N − n N − 1 ) =\dfrac{604}{40}-(3.4)^2=3.54= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 40 604 − ( 3.4 ) 2 = 3.54 = n σ 2 ( N − 1 N − n )
σ X ˉ = 3.54 ≈ 1.881489 \sigma_{\bar{X}}=\sqrt{3.54}\approx1.881489 σ X ˉ = 3.54 ≈ 1.881489
Comments