Question #341606

If the weights of 600 students are normally distributed with a mean of 50 kilograms and a variance of 16 kg




b.) How many students with weights between 50 kgs and 55 kgs. (5 points)




1
Expert's answer
2022-05-16T23:55:36-0400

Here the everage weights of 600 students is 5050 kg with standard deviation σ=variance=4\sigma=\sqrt{variance}=4

Let XX be a random variable denotes the weight of the students.

Then XX is normally distributed with mean 5050 kg and standard deviation 44 kg.

Therefore we have μ=50\mu =50 and σ=4\sigma=4  .

Let us take Z=XμσZ= \frac{X-\mu}{\sigma} . Then Z=X504Z=\frac{X-50}{4}.

Now we have to find P(50<X<55).P(50<X<55).

P(50<X<55)=P(50504<Z<55504)P(50<X<55)=P(\frac{50-50}{4}<Z<\frac{55-50}{4})

=P(0<Z<1.25)=P(0<Z<1.25)

=0.89440.5=0.3944=0.8944-0.5=0.3944

So the number of students with weights between 5050 kg and 5555 kg is =6000.3944)=236.64237=600*0.3944)=236.64\approx237

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS