We have population values 2,3,4,6, population size N=4 and sample size n=2.
1. Mean of population (μ) = 42+3+4+6=3.75
Variance of population
σ2=nΣ(xi−xˉ)2=41(3.0625+0.5625
+0.0625+5.0625)=2.1875=1635
σ=σ2=2.1875≈1.479022. Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is NCn=4C2=6.
no123456Sample2,32,42,63,43,64,6Samplemean (xˉ)5/26/28/27/29/210/2
3.
Xˉ5/26/27/28/29/210/2f(Xˉ)1/61/61/61/61/61/6Xˉf(Xˉ)5/126/127/128/129/1210/12Xˉ2f(Xˉ)25/2436/2449/2464/2481/24100/24
4. Mean of sampling distribution
μXˉ=E(Xˉ)=∑Xˉif(Xˉi)=1245=415=3.75=μ
The variance of sampling distribution
Var(Xˉ)=σXˉ2=∑Xˉi2f(Xˉi)−[∑Xˉif(Xˉi)]2=24355−(415)2=4835=nσ2(N−1N−n)
σXˉ=4835≈0.85391 5.
Comments