Consider a population consisting of 2.3.4 and 6 illustrate the situation by doing the following:
1.Compute the mean and variance of the population
2.list all possible samples of size 2
3.construct the sampling distribution of the sample
4. Compute the mean and standard deviation of the sampling distribution of the sample means
5.construct the histogram.
We have population values 2,3,4,6, population size N=4 and sample size n=2.
1. Mean of population "(\\mu)" = "\\dfrac{2+3+4+6}{4}=3.75"
Variance of population
"+0.0625+5.0625)=2.1875=\\dfrac{35}{16}"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{2.1875}\\approx1.47902"
2. Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{4}C_2=6."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 2,3 & 5\/2 \\\\\n \\hdashline\n 2 & 2,4 & 6\/2 \\\\\n \\hdashline\n 3 & 2,6 & 8\/2 \\\\\n \\hdashline\n 4 & 3,4 & 7\/2 \\\\\n \\hdashline\n 5 & 3,6 & 9\/2 \\\\\n \\hdashline\n 6 & 4,6 & 10\/2 \\\\\n \\hdashline\n\\end{array}"3.
4. Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=\\dfrac{45}{12}=\\dfrac{15}{4}=3.75=\\mu"The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{355}{24}-(\\dfrac{15}{4})^2=\\dfrac{35}{48}= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})""\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{35}{48}}\\approx0.85391"
5.
Comments
Leave a comment