Answer to Question #341210 in Statistics and Probability for Melquian

Question #341210

Consider a population consisting of 2, 4, 6, 8 and 10. Suppose samples of size 3 are drawn from this population.





a. Describe the sampling distribution of the sample means



b. What are the mean and variance of the sampling distribution of the sample means?



c. Construct a histogram for the sampling distribution.

1
Expert's answer
2022-05-16T16:16:22-0400

We have population values 2,4,6,8,10, population size N=5 and sample size n=3.

Mean of population (μ)(\mu) = 2+4+6+8+105=6\dfrac{2+4+6+8+10}{5}=6

Variance of population 


σ2=Σ(xixˉ)2n=16+4+0+4+165=8\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{16+4+0+4+16}{5}=8


σ=σ2=8=222.8284\sigma=\sqrt{\sigma^2}=\sqrt{8}=2\sqrt{2}\approx2.8284

a. Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is NCn=5C3=10.^{N}C_n=^{5}C_3=10.

noSampleSamplemean (xˉ)12,4,612/322,4,814/332,4,1016/342,6,816/352,6,1018/362,8,1020/374,6,818/384,6,1020/394,8,1022/3106,8,1024/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 2,4,6 & 12/3 \\ \hdashline 2 & 2,4,8 & 14/3 \\ \hdashline 3 & 2,4,10 & 16/3 \\ \hdashline 4 & 2,6,8 & 16/3 \\ \hdashline 5 & 2,6,10 & 18/3 \\ \hdashline 6 & 2,8,10 & 20/3 \\ \hdashline 7 & 4,6,8 & 18/3 \\ \hdashline 8 & 4,6,10 & 20/3 \\ \hdashline 9 & 4,8,10 & 22/3 \\ \hdashline 10 & 6,8,10 & 24/3 \\ \hdashline \end{array}



b.


Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)12/31/1012/30144/9014/31/1014/30196/9016/32/1032/30512/9018/32/1036/30648/9020/32/1040/30800/9022/31/1022/30484/9024/31/1024/30576/90\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 12/3 & 1/10 & 12/30 & 144/90 \\ \hdashline 14/3 & 1/10 & 14/30 & 196/90 \\ \hdashline 16/3 & 2/10 & 32/30 & 512/90 \\ \hdashline 18/3 & 2/10 & 36/30 & 648/90 \\ \hdashline 20/3 & 2/10 & 40/30 & 800/90 \\ \hdashline 22/3 &1/10 & 22/30 & 484/90 \\ \hdashline 24/3 & 1/10 & 24/30 & 576/90 \\ \hdashline \end{array}



Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=18030=6=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{180}{30}=6=\mu



The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=336090(6)2=43=σ2n(NnN1)=\dfrac{3360}{90}-(6)^2=\dfrac{4}{3}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

σXˉ=431.1547\sigma_{\bar{X}}=\sqrt{\dfrac{4}{3}}\approx1.1547

c.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment