We have population values 1,2,3,4,5,6, population size N=6 and sample size n=4.
Mean of population "(\\mu)" = "\\dfrac{1+2+3+4+5+6}{6}=3.5"
Variance of population
"\\sigma^2=\\dfrac{\\Sigma(x_i-\\bar{x})^2}{n}=\\dfrac{1}{6}(6.25+2.25+0.25"
"+0.25+2.25+6.25)=\\dfrac{17.5}{6}"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{\\dfrac{17.5}{6}}\\approx1.707825"1. Select a random sample of size 4 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{6}C_4=15."
2.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 1,2,3,4 & 10\/4 \\\\\n \\hdashline\n 2 & 1,2,3,5 & 11\/4 \\\\\n \\hdashline\n 3 & 1,2,3,6 & 12\/4 \\\\\n \\hdashline\n 4 & 1,2,4,5 & 12\/4 \\\\\n \\hdashline\n 5 & 1,2,4,6 & 13\/4 \\\\\n \\hdashline\n 6 & 1,2,5,6 & 14\/4 \\\\\n \\hdashline\n 7 & 1,3,4,5 & 13\/4 \\\\\n \\hdashline\n 8 & 1,3,4,6 & 14\/4 \\\\\n \\hdashline\n 9 & 1,3,5,6 & 15\/4 \\\\\n \\hdashline\n 10 & 1,4,5,6 & 16\/4 \\\\\n \\hdashline\n 11 & 2,3,4,5 & 14\/4 \\\\\n \\hdashline \n 12 & 2,3,4,6 & 15\/4 \\\\\n \\hdashline \n 13 & 2,3,5,6 & 16\/4 \\\\\n \\hdashline \n 14 & 2,4,5,6 & 17\/4\\\\\n \\hdashline \n 15 & 3,4,5,6 & 18\/4 \\\\\n \\hdashline \n \n\\end{array}"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n \\bar{X} & f(\\bar{X}) &\\bar{X} f(\\bar{X}) & \\bar{X}^2f(\\bar{X})\n\\\\ \\hline\n 10\/4 & 1\/15 & 10\/60 & 100\/240 \\\\\n \\hdashline\n 11\/4 & 1\/15 & 11\/60 & 121\/240 \\\\\n \\hdashline\n 12\/4 & 2\/15 & 24\/60 & 288\/240 \\\\\n \\hdashline\n 13\/4 & 2\/15 & 26\/60 & 338\/240 \\\\\n \\hdashline\n 14\/4 & 3\/15 & 42\/60 & 588\/240 \\\\\n \\hdashline\n 15\/4 & 2\/15 & 30\/60 & 450\/240 \\\\\n \\hdashline\n 16\/4 & 2\/15 & 32\/60 & 512\/240 \\\\\n \\hdashline\n 17\/4 & 1\/15 & 17\/60 & 289\/240 \\\\\n \\hdashline\n 18\/4 & 1\/15 & 18\/60 & 324\/240 \\\\\n \\hdashline\n\\end{array}"
3.
"P(\\bar{X}=4)=\\dfrac{2}{15}"
4.
"P(\\bar{X}=3.5)=\\dfrac{3}{15}=\\dfrac{1}{5}"
Comments
Leave a comment