We have population values 2,5,6,8,11, population size N=5 and sample size n=2.
Mean of population (μ) = 52+5+6+8+11=6.4
Variance of population
σ2=nΣ(xi−xˉ)2=51(19.36+1.96+0.16
+2.56+21.16)=9.04
σ=σ2=9.04≈3.00666A. Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is NCn=5C2=10.
no12345678910Sample2,52,62,82,115,65,85,116,86,118,11Samplemean (xˉ)7/28/210/213/211/213/216/214/217/219/2
Xˉ7/28/210/211/213/214/216/217/219/2f(Xˉ)1/101/101/101/102/101/101/101/101/10Xˉf(Xˉ)7/208/2010/2011/2026/2014/2016/2017/2019/20Xˉ2f(Xˉ)49/4064/40100/40121/40338/40196/40256/40289/40361/40
Mean of sampling distribution
μXˉ=E(Xˉ)=∑Xˉif(Xˉi)=20128=6.4=μ
The variance of sampling distribution
Var(Xˉ)=σXˉ2=∑Xˉi2f(Xˉi)−[∑Xˉif(Xˉi)]2=401774−(6.4)2=3.39=nσ2(N−1N−n)
σXˉ=3.39≈1.8412
Comments