A population consists of the five numbers 2,5,6, 8,and 11. Consider samples of size 2 that can be drawn from the population.
A. List the possible samples and the corresponding mean.
We have population values 2,5,6,8,11, population size N=5 and sample size n=2.
Mean of population "(\\mu)" = "\\dfrac{2+5+6+8+11}{5}=6.4"
Variance of population
"+2.56+21.16)=9.04"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{9.04}\\approx3.00666"
A. Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{5}C_2=10."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 2,5 & 7\/2 \\\\\n \\hdashline\n 2 & 2,6 & 8\/2 \\\\\n \\hdashline\n 3 & 2,8 & 10\/2 \\\\\n \\hdashline\n 4 & 2,11 & 13\/2 \\\\\n \\hdashline\n 5 & 5,6 & 11\/2 \\\\\n \\hdashline\n 6 & 5,8 & 13\/2 \\\\\n \\hdashline\n 7 & 5,11 & 16\/2 \\\\\n \\hdashline\n 8 & 6,8 & 14\/2 \\\\\n \\hdashline\n 9 & 6,11 & 17\/2 \\\\\n \\hdashline\n 10 & 8,11 & 19\/2 \\\\\n \\hdashline\n\\end{array}"Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=\\dfrac{128}{20}=6.4=\\mu"The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{1774}{40}-(6.4)^2=3.39= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})""\\sigma_{\\bar{X}}=\\sqrt{3.39}\\approx1.8412"
Comments
Leave a comment