Answer to Question #341241 in Statistics and Probability for Maricel

Question #341241

A population consists of the numbers of 1-5.List all the possible samples of size 3 from this population and construct the sampling distribution of the sample mean.

1
Expert's answer
2022-05-17T08:52:44-0400

We have population values 1,2,3,4,5, population size N=5 and sample size n=3.

Mean of population (μ)(\mu) = 1+2+3+4+55=3\dfrac{1+2+3+4+5}{5}=3

Variance of population 


σ2=Σ(xixˉ)2N=4+1+0+1+45=2\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{N}=\dfrac{4+1+0+1+4}{5}=2σ=σ2=21.4142\sigma=\sqrt{\sigma^2}=\sqrt{2}\approx1.4142


The number of possible samples which can be drawn without replacement is NCn=5C3=10.^{N}C_n=^{5}C_3=10.

noSampleSamplemean (xˉ)11,2,36/321,2,47/331,2,58/341,3,48/351,3,59/361,4,510/372,3,49/382,3,510/392,4,511/3103,4,512/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 1,2,3 & 6/3 \\ \hdashline 2 & 1,2,4 & 7/3 \\ \hdashline 3 & 1,2,5 & 8/3\\ \hdashline 4 & 1,3,4 & 8/3 \\ \hdashline 5 & 1,3,5 & 9/3 \\ \hdashline 6 & 1,4,5 & 10/3 \\ \hdashline 7 & 2,3,4 & 9/3 \\ \hdashline 8 & 2,3,5 & 10/3 \\ \hdashline 9 & 2,4,5 & 11/3 \\ \hdashline 10 & 3,4,5 & 12/3 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)6/31/106/3036/907/31/107/3049/908/32/1016/30128/909/32/1018/30162/9010/32/1020/30200/9011/31/1011/30121/9012/31/1012/30144/90\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 6/3 & 1/10 & 6/30 & 36/90 \\ \hdashline 7/3 & 1/10 & 7/30 & 49/90 \\ \hdashline 8/3 & 2/10 & 16/30 & 128/90 \\ \hdashline 9/3 & 2/10 & 18/30 & 162/90 \\ \hdashline 10/3 & 2/10 & 20/30 & 200/90 \\ \hdashline 11/3 & 1/10 & 11/30 & 121/90 \\ \hdashline 12/3 & 1/10 & 12/30 & 144/90 \\ \hdashline \end{array}



Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=3=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=3=\mu



The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=84090(3)2=13=σ2n(NnN1)=\dfrac{840}{90}-(3)^2=\dfrac{1}{3}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

σXˉ=130.57735\sigma_{\bar{X}}=\sqrt{\dfrac{1}{3}}\approx0.57735




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment