Question #320994

 Let X1, X2 have the joint probability density function f(x1, x2) = 2e −(x1+x2) , 0 < x1, x2 < ∞ Let Y1 = X1, Y2 = X2 − X1.

(i) Using the change of variable technique, find the joint probability density function of Y1, Y2

(ii) Find the conditional distribution of Y2 given Y1


1
Expert's answer
2022-04-06T11:43:35-0400

f(x1,x2)=2e(x1+x2),0<x1<x2<i:(Y1,Y2)=(X1,X2X1)X1=Y1X2=Y1+Y2(X1,X2)(Y1,Y2)=1011=1f(Y1,Y2)(y1,y2)=fX1,X2(y1,y1+y2)1=2e(y1+(y1+y2))I{0<y1<y1+y2<}==2e2y1ey2,y1>0,y2>0ii:SincefY1,Y2(y1,y2)=2e2y1I{y1>0}ey2I{y2>0}=fY1(y1)fY2(y2),theconditionaldistributionisthedistributionofY2:fY2Y1(y2y1)=fY2(y2)=ey2I{y2>0}f\left( x_1,x_2 \right) =2e^{-\left( x_1+x_2 \right)},0<x_1<x_2<\infty \\i:\\\left( Y_1,Y_2 \right) =\left( X_1,X_2-X_1 \right) \\X_1=Y_1\\X_2=Y_1+Y_2\\\left| \frac{\partial \left( X_1,X_2 \right)}{\partial \left( Y_1,Y_2 \right)} \right|=\left| \begin{matrix} 1& 0\\ 1& 1\\\end{matrix} \right|=1\\f_{\left( Y_1,Y_2 \right)}\left( y_1,y_2 \right) =f_{X_1,X_2}\left( y_1,y_1+y_2 \right) \cdot 1=2e^{-\left( y_1+\left( y_1+y_2 \right) \right)}I\left\{ 0<y_1<y_1+y_2<\infty \right\} =\\=2e^{-2y_1}e^{-y_2},y_1>0,y_2>0\\ii:\\Since\\f_{Y_1,Y_2}\left( y_1,y_2 \right) =2e^{-2y_1}I\left\{ y_1>0 \right\} \cdot e^{-y_2}I\left\{ y_2>0 \right\} =f_{Y_1}\left( y_1 \right) f_{Y_2}\left( y_2 \right) ,\\the\,\,conditional\,\,distribution\,\,is\,\,the\,\,distribution\,\,of\,\,Y_2:\\f_{Y_2|Y_1}\left( y_2|y_1 \right) =f_{Y_2}\left( y_2 \right) =e^{-y_2}I\left\{ y_2>0 \right\}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS