Answer to Question #320989 in Statistics and Probability for kevin

Question #320989

Let X and Y have joint probability distribution function f(x, y) = ( 2x+y /12) , (x, y) = (0, 1); (0, 2); (1, 2); (1, 3) 0, elsewhere

Find

(i) the covariance between X and Y.

(ii) the joint probability generating function of X and Y.


1
Expert's answer
2022-04-04T17:50:23-0400

f(x,y)={112,(x,y)=(0,1)16,(x,y)=(0,2)13,(x,y)=(1,2)512,(x,y)=(1,3)i:EX=0112+016+113+1512=34EY=1112+216+213+3512=73EXY=0112+016+213+3512=2312cov(X,Y)=23123473=16ii:MXY(t,s)=EetX+sY=es112+e2s16+et+2s13+et+3s512f\left( x,y \right) =\left\{ \begin{array}{c} \frac{1}{12},\left( x,y \right) =\left( 0,1 \right)\\ \frac{1}{6},\left( x,y \right) =\left( 0,2 \right)\\ \frac{1}{3},\left( x,y \right) =\left( 1,2 \right)\\ \frac{5}{12},\left( x,y \right) =\left( 1,3 \right)\\\end{array} \right. \\i:EX=0\cdot \frac{1}{12}+0\cdot \frac{1}{6}+1\cdot \frac{1}{3}+1\cdot \frac{5}{12}=\frac{3}{4}\\EY=1\cdot \frac{1}{12}+2\cdot \frac{1}{6}+2\cdot \frac{1}{3}+3\cdot \frac{5}{12}=\frac{7}{3}\\EXY=0\cdot \frac{1}{12}+0\cdot \frac{1}{6}+2\cdot \frac{1}{3}+3\cdot \frac{5}{12}=\frac{23}{12}\\cov\left( X,Y \right) =\frac{23}{12}-\frac{3}{4}\cdot \frac{7}{3}=\frac{1}{6}\\ii:\\M_{XY}\left( t,s \right) =Ee^{tX+sY}=e^s\cdot \frac{1}{12}+e^{2s}\cdot \frac{1}{6}+e^{t+2s}\cdot \frac{1}{3}+e^{t+3s}\cdot \frac{5}{12}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment