f ( x , y ) = { 1 12 , ( x , y ) = ( 0 , 1 ) 1 6 , ( x , y ) = ( 0 , 2 ) 1 3 , ( x , y ) = ( 1 , 2 ) 5 12 , ( x , y ) = ( 1 , 3 ) i : E X = 0 ⋅ 1 12 + 0 ⋅ 1 6 + 1 ⋅ 1 3 + 1 ⋅ 5 12 = 3 4 E Y = 1 ⋅ 1 12 + 2 ⋅ 1 6 + 2 ⋅ 1 3 + 3 ⋅ 5 12 = 7 3 E X Y = 0 ⋅ 1 12 + 0 ⋅ 1 6 + 2 ⋅ 1 3 + 3 ⋅ 5 12 = 23 12 c o v ( X , Y ) = 23 12 − 3 4 ⋅ 7 3 = 1 6 i i : M X Y ( t , s ) = E e t X + s Y = e s ⋅ 1 12 + e 2 s ⋅ 1 6 + e t + 2 s ⋅ 1 3 + e t + 3 s ⋅ 5 12 f\left( x,y \right) =\left\{ \begin{array}{c} \frac{1}{12},\left( x,y \right) =\left( 0,1 \right)\\ \frac{1}{6},\left( x,y \right) =\left( 0,2 \right)\\ \frac{1}{3},\left( x,y \right) =\left( 1,2 \right)\\ \frac{5}{12},\left( x,y \right) =\left( 1,3 \right)\\\end{array} \right. \\i:EX=0\cdot \frac{1}{12}+0\cdot \frac{1}{6}+1\cdot \frac{1}{3}+1\cdot \frac{5}{12}=\frac{3}{4}\\EY=1\cdot \frac{1}{12}+2\cdot \frac{1}{6}+2\cdot \frac{1}{3}+3\cdot \frac{5}{12}=\frac{7}{3}\\EXY=0\cdot \frac{1}{12}+0\cdot \frac{1}{6}+2\cdot \frac{1}{3}+3\cdot \frac{5}{12}=\frac{23}{12}\\cov\left( X,Y \right) =\frac{23}{12}-\frac{3}{4}\cdot \frac{7}{3}=\frac{1}{6}\\ii:\\M_{XY}\left( t,s \right) =Ee^{tX+sY}=e^s\cdot \frac{1}{12}+e^{2s}\cdot \frac{1}{6}+e^{t+2s}\cdot \frac{1}{3}+e^{t+3s}\cdot \frac{5}{12} f ( x , y ) = ⎩ ⎨ ⎧ 12 1 , ( x , y ) = ( 0 , 1 ) 6 1 , ( x , y ) = ( 0 , 2 ) 3 1 , ( x , y ) = ( 1 , 2 ) 12 5 , ( x , y ) = ( 1 , 3 ) i : EX = 0 ⋅ 12 1 + 0 ⋅ 6 1 + 1 ⋅ 3 1 + 1 ⋅ 12 5 = 4 3 E Y = 1 ⋅ 12 1 + 2 ⋅ 6 1 + 2 ⋅ 3 1 + 3 ⋅ 12 5 = 3 7 EX Y = 0 ⋅ 12 1 + 0 ⋅ 6 1 + 2 ⋅ 3 1 + 3 ⋅ 12 5 = 12 23 co v ( X , Y ) = 12 23 − 4 3 ⋅ 3 7 = 6 1 ii : M X Y ( t , s ) = E e tX + s Y = e s ⋅ 12 1 + e 2 s ⋅ 6 1 + e t + 2 s ⋅ 3 1 + e t + 3 s ⋅ 12 5
Comments