f ( x , y ) = 1 2 π σ 2 exp ( − ( x − μ ) 2 2 σ 2 ) exp ( − ( y − μ ) 2 2 σ 2 ) T h i s i s a d e n s i t y o f i . i . d . r a n d o m v a r i a b l e s X , Y ∼ N ( μ , σ 2 ) M Z ( t ) = E e t Z = E t ( X + Y 2 ) = = E e t X E e t Y 2 = exp ( μ t + 1 2 σ 2 t 2 ) ∫ − ∞ + ∞ 1 2 π σ 2 exp ( t y 2 − ( y − μ ) 2 2 σ 2 ) d y = = exp ( μ t + 1 2 σ 2 t 2 ) ∫ − ∞ + ∞ 1 2 π σ 2 exp ( − ( y − μ 1 − 2 t σ 2 ) 2 2 σ 2 1 − 2 t σ 2 ) exp ( μ 2 t ) d t = = [ f ( t ) = 1 2 π σ 2 1 − 2 t σ 2 exp ( − ( y − μ 1 − 2 t σ 2 ) 2 σ 2 1 − 2 t σ 2 ) ∼ N ( μ 1 − 2 t σ 2 , σ 2 1 − 2 t σ 2 ) ⇒ ⇒ ∫ − ∞ + ∞ f ( t ) d t = 1 ] = = exp ( μ t + 1 2 σ 2 t 2 ) exp ( μ 2 t ) 1 − 2 t σ 2 = exp ( ( μ + μ 2 ) t + 1 2 σ 2 t 2 ) 1 − 2 t σ 2 E Z = d d t M Z ( t ) ∣ t = 0 = = exp ( ( μ + μ 2 ) t + 1 2 σ 2 t 2 ) ( − 2 ( μ + μ 2 ) σ 2 t + μ + μ 2 − 2 σ 4 t 2 + σ 2 t + σ 2 ) ( 1 − 2 t σ 2 ) 3 / 2 ∣ t = 0 = = μ + μ 2 + σ 2 E Z 2 = d 2 d t 2 M Z ( t ) ∣ t = 0 = = exp ( ( μ + μ 2 ) t + 1 2 σ 2 t 2 ) ( 3 σ 4 ( 1 − 2 t σ 2 ) 5 / 2 + 2 σ 2 ( μ + μ 2 + σ 2 t ) ( 1 − 2 t σ 2 ) 3 / 2 + ( μ + μ 2 + σ 2 t ) 2 + σ 2 ( 1 − 2 t σ 2 ) 1 / 2 ) ∣ t = 0 = = 3 σ 4 + 2 σ 2 ( μ + μ 2 ) + ( μ + μ 2 ) 2 + σ 2 V a r ( Z ) = 3 σ 4 + 2 σ 2 ( μ + μ 2 ) + ( μ + μ 2 ) 2 + σ 2 − ( μ + μ 2 + σ 2 ) 2 = = σ 2 + 2 σ 4 f\left( x,y \right) =\frac{1}{2\pi \sigma ^2}\exp \left( -\frac{\left( x-\mu \right) ^2}{2\sigma ^2} \right) \exp \left( -\frac{\left( y-\mu \right) ^2}{2\sigma ^2} \right) \\This\,\,is\,\,a\,\,density\,\,of\,\,i.i.d. random\,\,variables\,\,X,Y\sim N\left( \mu ,\sigma ^2 \right) \\M_Z\left( t \right) =Ee^{tZ}=E^{t\left( X+Y^2 \right)}=\\=Ee^{tX}Ee^{tY^2}=\exp \left( \mu t+\frac{1}{2}\sigma ^2t^2 \right) \int_{-\infty}^{+\infty}{\frac{1}{\sqrt{2\pi \sigma ^2}}\exp \left( ty^2-\frac{\left( y-\mu \right) ^2}{2\sigma ^2} \right)}dy=\\=\exp \left( \mu t+\frac{1}{2}\sigma ^2t^2 \right) \int_{-\infty}^{+\infty}{\frac{1}{\sqrt{2\pi \sigma ^2}}\exp \left( -\frac{\left( y-\frac{\mu}{1-2t\sigma ^2} \right) ^2}{\frac{2\sigma ^2}{1-2t\sigma ^2}} \right) \exp \left( \mu ^2t \right) dt}=\\=\left[ \begin{array}{c} f\left( t \right) =\frac{1}{\sqrt{2\pi \frac{\sigma ^2}{1-2t\sigma ^2}}}\exp \left( -\frac{\left( y-\frac{\mu}{1-2t\sigma ^2} \right)}{\frac{2\sigma ^2}{1-2t\sigma ^2}} \right) \sim N\left( \frac{\mu}{1-2t\sigma ^2},\frac{\sigma ^2}{1-2t\sigma ^2} \right) \Rightarrow\\ \Rightarrow \int_{-\infty}^{+\infty}{f\left( t \right) dt}=1\\\end{array} \right] =\\=\exp \left( \mu t+\frac{1}{2}\sigma ^2t^2 \right) \frac{\exp \left( \mu ^2t \right)}{\sqrt{1-2t\sigma ^2}}=\frac{\exp \left( \left( \mu +\mu ^2 \right) t+\frac{1}{2}\sigma ^2t^2 \right)}{\sqrt{1-2t\sigma ^2}}\\EZ=\frac{d}{dt}M_Z\left( t \right) |_{t=0}=\\=\exp \left( \left( \mu +\mu ^2 \right) t+\frac{1}{2}\sigma ^2t^2 \right) \frac{\left( -2\left( \mu +\mu ^2 \right) \sigma ^2t+\mu +\mu ^2-2\sigma ^4t^2+\sigma ^2t+\sigma ^2 \right)}{\left( 1-2t\sigma ^2 \right) ^{3/2}}|_{t=0}=\\=\mu +\mu ^2+\sigma ^2\\EZ^2=\frac{d^2}{dt^2}M_Z\left( t \right) |_{t=0}=\\=\exp \left( \left( \mu +\mu ^2 \right) t+\frac{1}{2}\sigma ^2t^2 \right) \left( \frac{3\sigma ^4}{\left( 1-2t\sigma ^2 \right) ^{5/2}}+\frac{2\sigma ^2\left( \mu +\mu ^2+\sigma ^2t \right)}{\left( 1-2t\sigma ^2 \right) ^{3/2}}+\frac{\left( \mu +\mu ^2+\sigma ^2t \right) ^2+\sigma ^2}{\left( 1-2t\sigma ^2 \right) ^{1/2}} \right) |_{t=0}=\\=3\sigma ^4+2\sigma ^2\left( \mu +\mu ^2 \right) +\left( \mu +\mu ^2 \right) ^2+\sigma ^2\\Var\left( Z \right) =3\sigma ^4+2\sigma ^2\left( \mu +\mu ^2 \right) +\left( \mu +\mu ^2 \right) ^2+\sigma ^2-\left( \mu +\mu ^2+\sigma ^2 \right) ^2=\\=\sigma ^2+2\sigma ^4 f ( x , y ) = 2 π σ 2 1 exp ( − 2 σ 2 ( x − μ ) 2 ) exp ( − 2 σ 2 ( y − μ ) 2 ) T hi s i s a d e n s i t y o f i . i . d . r an d o m v a r iab l es X , Y ∼ N ( μ , σ 2 ) M Z ( t ) = E e tZ = E t ( X + Y 2 ) = = E e tX E e t Y 2 = exp ( μ t + 2 1 σ 2 t 2 ) ∫ − ∞ + ∞ 2 π σ 2 1 exp ( t y 2 − 2 σ 2 ( y − μ ) 2 ) d y = = exp ( μ t + 2 1 σ 2 t 2 ) ∫ − ∞ + ∞ 2 π σ 2 1 exp ( − 1 − 2 t σ 2 2 σ 2 ( y − 1 − 2 t σ 2 μ ) 2 ) exp ( μ 2 t ) d t = = ⎣ ⎡ f ( t ) = 2 π 1 − 2 t σ 2 σ 2 1 exp ( − 1 − 2 t σ 2 2 σ 2 ( y − 1 − 2 t σ 2 μ ) ) ∼ N ( 1 − 2 t σ 2 μ , 1 − 2 t σ 2 σ 2 ) ⇒ ⇒ ∫ − ∞ + ∞ f ( t ) d t = 1 ⎦ ⎤ = = exp ( μ t + 2 1 σ 2 t 2 ) 1 − 2 t σ 2 e x p ( μ 2 t ) = 1 − 2 t σ 2 e x p ( ( μ + μ 2 ) t + 2 1 σ 2 t 2 ) EZ = d t d M Z ( t ) ∣ t = 0 = = exp ( ( μ + μ 2 ) t + 2 1 σ 2 t 2 ) ( 1 − 2 t σ 2 ) 3/2 ( − 2 ( μ + μ 2 ) σ 2 t + μ + μ 2 − 2 σ 4 t 2 + σ 2 t + σ 2 ) ∣ t = 0 = = μ + μ 2 + σ 2 E Z 2 = d t 2 d 2 M Z ( t ) ∣ t = 0 = = exp ( ( μ + μ 2 ) t + 2 1 σ 2 t 2 ) ( ( 1 − 2 t σ 2 ) 5/2 3 σ 4 + ( 1 − 2 t σ 2 ) 3/2 2 σ 2 ( μ + μ 2 + σ 2 t ) + ( 1 − 2 t σ 2 ) 1/2 ( μ + μ 2 + σ 2 t ) 2 + σ 2 ) ∣ t = 0 = = 3 σ 4 + 2 σ 2 ( μ + μ 2 ) + ( μ + μ 2 ) 2 + σ 2 Va r ( Z ) = 3 σ 4 + 2 σ 2 ( μ + μ 2 ) + ( μ + μ 2 ) 2 + σ 2 − ( μ + μ 2 + σ 2 ) 2 = = σ 2 + 2 σ 4
Comments