Calculate the mean and the variance of the discrete random variable x which one values 12 and 3, given that P(1)=10/33, P(2)=1/3 and P(3)=12/33
The mean:
"\\mu=\\sum x_i\\cdot P(x_i)=\\\\\n=1\\cdot\\cfrac{10}{33}+2\\cdot\\cfrac{1}{3}+3\\cdot\\cfrac{12}{33}=\\cfrac{68}{33}\\approx2.06."
The variance:
"\\sigma^2=\\sum(x_i-\\mu)^2\\cdot P(x_i),"
"X-\\mu=\\begin{Bmatrix}\n 1-\\cfrac{68}{33}, 2-\\cfrac{68}{33}, 3-\\cfrac{68}{33}\n\\end{Bmatrix}="
"=\\begin{Bmatrix}\n\\cfrac{-35}{33},\\cfrac{-2}{33}, \\cfrac{31}{33}\n\\end{Bmatrix},"
"\\sigma^2=\\\\\n=\\begin{pmatrix} \\cfrac{-35}{33}\\end{pmatrix}^2\\cdot\\cfrac{10}{33}+\\begin{pmatrix} \\cfrac{-2}{33}\\end{pmatrix}^2\\cdot\\cfrac{1}{3}+\\begin{pmatrix} \\cfrac{31}{33}\\end{pmatrix}^2\\cdot\\cfrac{12}{33}=\\\\\n=2.01."
Comments
Leave a comment