Answer to Question #320917 in Statistics and Probability for Lyns

Question #320917

Calculate the mean and the variance of the discrete random variable x which one values 12 and 3, given that P(1)=10/33, P(2)=1/3 and P(3)=12/33

1
Expert's answer
2022-03-31T07:55:59-0400

The mean:

μ=xiP(xi)==11033+213+31233=68332.06.\mu=\sum x_i\cdot P(x_i)=\\ =1\cdot\cfrac{10}{33}+2\cdot\cfrac{1}{3}+3\cdot\cfrac{12}{33}=\cfrac{68}{33}\approx2.06.


The variance:

σ2=(xiμ)2P(xi),\sigma^2=\sum(x_i-\mu)^2\cdot P(x_i),

Xμ={16833,26833,36833}=X-\mu=\begin{Bmatrix} 1-\cfrac{68}{33}, 2-\cfrac{68}{33}, 3-\cfrac{68}{33} \end{Bmatrix}=

={3533,233,3133},=\begin{Bmatrix} \cfrac{-35}{33},\cfrac{-2}{33}, \cfrac{31}{33} \end{Bmatrix},

σ2==(3533)21033+(233)213+(3133)21233==2.01.\sigma^2=\\ =\begin{pmatrix} \cfrac{-35}{33}\end{pmatrix}^2\cdot\cfrac{10}{33}+\begin{pmatrix} \cfrac{-2}{33}\end{pmatrix}^2\cdot\cfrac{1}{3}+\begin{pmatrix} \cfrac{31}{33}\end{pmatrix}^2\cdot\cfrac{12}{33}=\\ =2.01.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment