Box A box B both contain the numbers 1,2,3 and 4 contrast the probability mass function and draw the histogram of the sum when one number from each box is take at a time with replacement
"X_1-number\\,\\,from\\,\\,the\\,\\,1st\\,\\,box\\\\X_2-number\\,\\,from\\,\\,the\\,\\,2nd\\,\\,box\\\\S=X_1+X_2\\in \\left\\{ 2,3,4,5,6,7,8 \\right\\} \\\\P\\left( S=2 \\right) =P\\left( X_1=1,X_2=1 \\right) =\\frac{1}{4}\\cdot \\frac{1}{4}=0.0625\\\\P\\left( S=3 \\right) =P\\left( X_1=1,X_2=2 \\right) +P\\left( X_1=2,X_2=1 \\right) =2\\cdot \\frac{1}{4}\\cdot \\frac{1}{4}=0.125\\\\P\\left( S=4 \\right) =P\\left( X_1=1,X_2=3 \\right) +P\\left( X_1=2,X_2=2 \\right) +P\\left( X_1=3,X_2=1 \\right) =3\\cdot \\frac{1}{4}\\cdot \\frac{1}{4}=0.1875\\\\P\\left( S=5 \\right) =P\\left( X_1=1,X_2=4 \\right) +P\\left( X_1=2,X_2=3 \\right) +P\\left( X_1=3,X_2=2 \\right) +P\\left( X_1=4,X_2=1 \\right) =4\\cdot \\frac{1}{4}\\cdot \\frac{1}{4}=0.25\\\\P\\left( S=6 \\right) =P\\left( X_1=2,X_2=4 \\right) +P\\left( X_1=3,X_2=3 \\right) +P\\left( X_1=4,X_2=2 \\right) =3\\cdot \\frac{1}{4}\\cdot \\frac{1}{4}=0.1875\\\\P\\left( S=7 \\right) =P\\left( X_1=3,X_2=4 \\right) +P\\left( X_1=4,X_2=3 \\right) =2\\cdot \\frac{1}{4}\\cdot \\frac{1}{4}=0.125\\\\P\\left( S=8 \\right) =P\\left( X_1=4,X_2=4 \\right) =\\frac{1}{4}\\cdot \\frac{1}{4}=0.0625"
Comments
Leave a comment