According to a report, 67.4% of murders are committed with a firearm. (a) If 200 murders are randomly selected, how many would we expect to be committed with a firearm? (b) Would it be unusual to observe 147 murders by firearm in a random sample of 200 murders? Why?
"a:\\\\200\\cdot 0.674=134.8\\\\The\\,\\,number\\,\\,will\\,\\,be\\,\\,around\\,\\,135\\\\b:\\\\P\\left( \\hat{p}\\geqslant \\frac{147}{200} \\right) =P\\left( \\sqrt{n}\\frac{\\hat{p}-p}{\\sqrt{p\\left( 1-p \\right)}}\\geqslant \\sqrt{n}\\frac{\\frac{147}{200}-p}{\\sqrt{p\\left( 1-p \\right)}} \\right) =\\\\=P\\left( Z\\geqslant \\sqrt{200}\\frac{\\frac{147}{200}-0.674}{\\sqrt{0.674\\left( 1-0.674 \\right)}} \\right) =P\\left( Z\\geqslant 1.8404 \\right) =\\\\=\\varPhi \\left( -1.8404 \\right) =0.033\\\\The\\,\\,probability\\,\\,to\\,\\,obtain\\,\\,147 or\\,\\,more\\,\\,murders\\,\\,by\\,\\,firearm\\,\\,of\\,\\,200 is\\,\\,less\\,\\,than\\,\\,4\\%. \\\\Thus\\,\\,this\\,\\,is\\,\\,unusual."
Comments
Leave a comment