According to a survey, 32% of drivers tailgate other vehicles before passing them (thinking it will incite them to speed up). Consider 45 drivers selected at random. Use a normal approximation to find the probability that:
(a) at least 17 drivers tailgate? (Use only 3 decimal places)
(b) more than 9 but less than 25 drivers tailgate? (Use only 3 decimal places) ans_a is 0.251
"\\hat{p}-the\\,\\,sample\\,\\,proportion\\\\a:\\\\P\\left( \\hat{p}\\geqslant \\frac{17}{45} \\right) =P\\left( \\sqrt{n}\\frac{\\hat{p}-p}{\\sqrt{p\\left( 1-p \\right)}}\\geqslant \\sqrt{n}\\frac{\\frac{17}{45}-p}{\\sqrt{p\\left( 1-p \\right)}} \\right) =\\\\=P\\left( Z\\geqslant \\sqrt{45}\\frac{\\frac{17}{45}-0.32}{\\sqrt{0.32\\left( 1-0.32 \\right)}} \\right) =P\\left( Z\\geqslant 0.830879 \\right) =\\\\=1-\\varPhi \\left( 0.830879 \\right) =1-0.7970=0.203\\\\a:\\\\P\\left( \\frac{9}{45}<\\hat{p}<\\frac{25}{45} \\right) =P\\left( \\sqrt{n}\\frac{\\frac{9}{45}-p}{\\sqrt{p\\left( 1-p \\right)}}<\\sqrt{n}\\frac{\\hat{p}-p}{\\sqrt{p\\left( 1-p \\right)}}<\\sqrt{n}\\frac{\\frac{25}{45}-p}{\\sqrt{p\\left( 1-p \\right)}} \\right) =\\\\=P\\left( \\sqrt{45}\\frac{\\frac{9}{45}-0.32}{\\sqrt{0.32\\left( 1-0.32 \\right)}}<Z<\\sqrt{45}\\frac{\\frac{25}{45}-0.32}{\\sqrt{0.32\\left( 1-0.32 \\right)}} \\right) =\\\\=P\\left( -1.72567<Z<3.38743 \\right) =\\varPhi \\left( 3.38743 \\right) -\\varPhi \\left( -1.72567 \\right) =\\\\=0.9996-0.0422=0.9574"
Comments
Leave a comment