Question #320756

According to a survey, 32% of drivers tailgate other vehicles before passing them (thinking it will incite them to speed up). Consider 45 drivers selected at random. Use a normal approximation to find the probability that:

(a) at least 17 drivers tailgate?  (Use only 3 decimal places)

(b) more than 9 but less than 25 drivers tailgate?  (Use only 3 decimal places) ans_a is 0.251


1
Expert's answer
2022-03-31T02:53:54-0400

p^thesampleproportiona:P(p^1745)=P(np^pp(1p)n1745pp(1p))==P(Z4517450.320.32(10.32))=P(Z0.830879)==1Φ(0.830879)=10.7970=0.203a:P(945<p^<2545)=P(n945pp(1p)<np^pp(1p)<n2545pp(1p))==P(459450.320.32(10.32)<Z<4525450.320.32(10.32))==P(1.72567<Z<3.38743)=Φ(3.38743)Φ(1.72567)==0.99960.0422=0.9574\hat{p}-the\,\,sample\,\,proportion\\a:\\P\left( \hat{p}\geqslant \frac{17}{45} \right) =P\left( \sqrt{n}\frac{\hat{p}-p}{\sqrt{p\left( 1-p \right)}}\geqslant \sqrt{n}\frac{\frac{17}{45}-p}{\sqrt{p\left( 1-p \right)}} \right) =\\=P\left( Z\geqslant \sqrt{45}\frac{\frac{17}{45}-0.32}{\sqrt{0.32\left( 1-0.32 \right)}} \right) =P\left( Z\geqslant 0.830879 \right) =\\=1-\varPhi \left( 0.830879 \right) =1-0.7970=0.203\\a:\\P\left( \frac{9}{45}<\hat{p}<\frac{25}{45} \right) =P\left( \sqrt{n}\frac{\frac{9}{45}-p}{\sqrt{p\left( 1-p \right)}}<\sqrt{n}\frac{\hat{p}-p}{\sqrt{p\left( 1-p \right)}}<\sqrt{n}\frac{\frac{25}{45}-p}{\sqrt{p\left( 1-p \right)}} \right) =\\=P\left( \sqrt{45}\frac{\frac{9}{45}-0.32}{\sqrt{0.32\left( 1-0.32 \right)}}<Z<\sqrt{45}\frac{\frac{25}{45}-0.32}{\sqrt{0.32\left( 1-0.32 \right)}} \right) =\\=P\left( -1.72567<Z<3.38743 \right) =\varPhi \left( 3.38743 \right) -\varPhi \left( -1.72567 \right) =\\=0.9996-0.0422=0.9574


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS