A discrete random variable X has probability distribution function f(x) = 12! /x!(12−x)!p x (1 − p) 12−x x = 0, 1, 2, .., 12 0, elsewhere
(i) if p = 0.3, find Pr(X > 3).
(ii) find possible values of p if Var[X] is equal to 1.92.
f(x)=12!x!(12−x)!px(1−p)12−x,x=0,1,...,12⇒X∼Bin(12,p)i:P(X>3)=1−P(X=0)−P(X=1)−P(X=2)==1−∑i=02C12ipi(1−p)12−i=1−0.712−12⋅0.3⋅0.711−12⋅112⋅0.32⋅0.710=0.747185ii:Var(X)=np(1−p)12p(1−p)=1.92⇒p2−p+0.16=0⇒p∈{0.2,0.8}f\left( x \right) =\frac{12!}{x!\left( 12-x \right) !}p^x\left( 1-p \right) ^{12-x},x=0,1,...,12\Rightarrow X\sim Bin\left( 12,p \right) \\i:P\left( X>3 \right) =1-P\left( X=0 \right) -P\left( X=1 \right) -P\left( X=2 \right) =\\=1-\sum_{i=0}^2{C_{12}^{i}p^i\left( 1-p \right) ^{12-i}}=1-0.7^{12}-12\cdot 0.3\cdot 0.7^{11}-\frac{12\cdot 11}{2}\cdot 0.3^2\cdot 0.7^{10}=0.747185\\ii: Var\left( X \right) =np\left( 1-p \right) \\12p\left( 1-p \right) =1.92\Rightarrow p^2-p+0.16=0\Rightarrow p\in \left\{ 0.2,0.8 \right\}f(x)=x!(12−x)!12!px(1−p)12−x,x=0,1,...,12⇒X∼Bin(12,p)i:P(X>3)=1−P(X=0)−P(X=1)−P(X=2)==1−∑i=02C12ipi(1−p)12−i=1−0.712−12⋅0.3⋅0.711−212⋅11⋅0.32⋅0.710=0.747185ii:Var(X)=np(1−p)12p(1−p)=1.92⇒p2−p+0.16=0⇒p∈{0.2,0.8}
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments