A discrete random variable X has probability distribution function f(x) = 12! /x!(12−x)!p x (1 − p) 12−x x = 0, 1, 2, .., 12 0, elsewhere
(i) if p = 0.3, find Pr(X > 3).
(ii) find possible values of p if Var[X] is equal to 1.92.
"f\\left( x \\right) =\\frac{12!}{x!\\left( 12-x \\right) !}p^x\\left( 1-p \\right) ^{12-x},x=0,1,...,12\\Rightarrow X\\sim Bin\\left( 12,p \\right) \\\\i:P\\left( X>3 \\right) =1-P\\left( X=0 \\right) -P\\left( X=1 \\right) -P\\left( X=2 \\right) =\\\\=1-\\sum_{i=0}^2{C_{12}^{i}p^i\\left( 1-p \\right) ^{12-i}}=1-0.7^{12}-12\\cdot 0.3\\cdot 0.7^{11}-\\frac{12\\cdot 11}{2}\\cdot 0.3^2\\cdot 0.7^{10}=0.747185\\\\ii: Var\\left( X \\right) =np\\left( 1-p \\right) \\\\12p\\left( 1-p \\right) =1.92\\Rightarrow p^2-p+0.16=0\\Rightarrow p\\in \\left\\{ 0.2,0.8 \\right\\}"
Comments
Leave a comment