The moment generating function of two jointly distributed random variables X1 and X2 is M(t1, t2) = e ^− 0.5 G where G = (7.51t 2 1 + 7.9t 2 2 + 3.8574t1t2 + 135.4t1 + 137.2t2) Using this function, find the correlation coefficient of of X1 and X2
"M\\left( t_1,t_2 \\right) =\\exp \\left( -\\frac{7.51{t_1}^2+7.9{t_2}^2+3.8574t_1t_2+135.4t_1+137.2t_2}{2} \\right) \\\\EX_1=\\frac{\\partial M\\left( t_1,t_2 \\right)}{\\partial t_1}=-\\frac{135.4}{2}=-67.7\\\\{EX_1}^2=\\frac{\\partial ^2M\\left( t_1,t_2 \\right)}{\\partial t_1^2}|_{t_1=t_2=0}=4575.78\\\\Var\\left( X_1 \\right) =4575.78-\\left( -67.7 \\right) ^2=-7.51<0\\\\Since\\,\\,we\\,\\,obtained\\,\\,a\\,\\,negative\\,\\,variance, the\\,\\,problem\\,\\,is\\,\\,incorrect"
Comments
Leave a comment