Question #315702

A local drugstore owner knows that, on average, 100 people enter his store each hour.


a) Find the probability that in a given 3-minute period nobody enters the store.


b) Find the probability that in a given 3-minute period more than 5 people enter the


store.

1
Expert's answer
2022-03-27T16:05:21-0400

We have a Poisson distribution,

λ=100;Pt(X=k)=(λt)keλtk!;3 mins=360 hour=0.05 hour;\lambda=100; P_t(X=k)=\cfrac{(\lambda t)^k\cdot e^{-\lambda t}}{k!};\\ 3\ \rm{mins=\cfrac{3}{60} \ hour=0.05\ hour;}

For a 3minute period λt=1000.05=5.\rm For\ a\ 3-minute\ period \ \lambda t=100\cdot0.05=5.


a)

P0.05(X=0)=50e50!=0.0067.P_{0.05}(X=0)=\cfrac{5^0\cdot e^{-5}}{0!}=0.0067.


b)

P0.05(X>5)=1P0.05(X5)==1(P0.05(X=0)+P0.05(X=1)++P0.05(X=2)+P0.05(X=3)++P0.05(X=4)+P0.05(X=5))==1(500!+511!+522!+533!+544!+555!)e5==1(1+5+12.5+20.83+26.04+26.04)e5==10.6160=0.3840.P_{0.05}(X>5)=1-P_{0.05}(X\leq5)=\\ =1-(P_{0.05}(X=0)+P_{0.05}(X=1)+\\ +P_{0.05}(X=2)+P_{0.05}(X=3)+\\ +P_{0.05}(X=4)+P_{0.05}(X=5))=\\ =1-\\ -\begin{pmatrix} \cfrac{5^0}{0!}+\cfrac{5^1}{1!}+\cfrac{5^2}{2!}+\cfrac{5^3}{3!}+\cfrac{5^4}{4!}+\cfrac{5^5}{5!}\end{pmatrix}\cdot e^{-5}=\\ =1-\\ -(1+5+12.5+20.83+26.04+26.04)\cdot e^{-5}=\\ =1-0.6160=0.3840.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS