We have a Poisson distribution,
λ=100;Pt(X=k)=k!(λt)k⋅e−λt;3 mins=603 hour=0.05 hour;
For a 3−minute period λt=100⋅0.05=5.
a)
P0.05(X=0)=0!50⋅e−5=0.0067.
b)
P0.05(X>5)=1−P0.05(X≤5)==1−(P0.05(X=0)+P0.05(X=1)++P0.05(X=2)+P0.05(X=3)++P0.05(X=4)+P0.05(X=5))==1−−(0!50+1!51+2!52+3!53+4!54+5!55)⋅e−5==1−−(1+5+12.5+20.83+26.04+26.04)⋅e−5==1−0.6160=0.3840.
Comments