The number of failures of a testing instrument from contamination particles on the
product is a Poisson random variable with a mean of 0.02 failure per hour.
a) What is the probability that the instrument does not fail in an 8-hour shift?
b) What is the probability of at least one failure in a 24-hour shift?
We have a Poisson distribution,
"\\lambda=0.02;\nP_t(X=k)=\\cfrac{(\\lambda t)^k\\cdot e^{-\\lambda t}}{k!}=\\cfrac{(0.02t)^k\\cdot e^{-0.02t}}{k!}."
(a) "P_8(X=0)=\\cfrac{(0.02\\cdot 8)^0\\cdot e^{(-0.02\\cdot8)}}{0!}=0.8521."
(b)
"P_{24}(X\\geq1)=1-P_{24}(X<1)=1-P_{24}(X=0)=\\\\\n=1-\\cfrac{(0.02\\cdot24)^0\\cdot e^{(-0.02\\cdot24)}}{0!}=\\\\=1-0.6188=0.3812."
Comments
Leave a comment