The number of customers arriving per hour at a certain automobile service facility is assumed to follow a Poisson distribution with mean 𝜆 = 7. Compute the probability that more than 10 customers will arrive in a 2-hour period.
X2∼Poiss(2λ)=Poiss(14)P(X2>10)=1−P(X2⩽10)==1−∑n=010λne−λn!==1−e−14(1+141!+1422!+1433!+1444!+1455!+1466!+1477!+1488!+1499!+141010!)=0.824319X_2\sim Poiss\left( 2\lambda \right) =Poiss\left( 14 \right) \\P\left( X_2>10 \right) =1-P\left( X_2\leqslant 10 \right) =\\=1-\sum_{n=0}^{10}{\frac{\lambda ^ne^{-\lambda}}{n!}}=\\=1-e^{-14}\left( 1+\frac{14}{1!}+\frac{14^2}{2!}+\frac{14^3}{3!}+\frac{14^4}{4!}+\frac{14^5}{5!}+\frac{14^6}{6!}+\frac{14^7}{7!}+\frac{14^8}{8!}+\frac{14^9}{9!}+\frac{14^{10}}{10!} \right) =0.824319X2∼Poiss(2λ)=Poiss(14)P(X2>10)=1−P(X2⩽10)==1−∑n=010n!λne−λ==1−e−14(1+1!14+2!142+3!143+4!144+5!145+6!146+7!147+8!148+9!149+10!1410)=0.824319
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments