The number of customers arriving per hour at a certain automobile service facility is assumed to follow a Poisson distribution with mean π = 7. Compute the probability that more than 10 customers will arrive in a 2-hour period.
"X_2\\sim Poiss\\left( 2\\lambda \\right) =Poiss\\left( 14 \\right) \\\\P\\left( X_2>10 \\right) =1-P\\left( X_2\\leqslant 10 \\right) =\\\\=1-\\sum_{n=0}^{10}{\\frac{\\lambda ^ne^{-\\lambda}}{n!}}=\\\\=1-e^{-14}\\left( 1+\\frac{14}{1!}+\\frac{14^2}{2!}+\\frac{14^3}{3!}+\\frac{14^4}{4!}+\\frac{14^5}{5!}+\\frac{14^6}{6!}+\\frac{14^7}{7!}+\\frac{14^8}{8!}+\\frac{14^9}{9!}+\\frac{14^{10}}{10!} \\right) =0.824319"
Comments
Leave a comment