Find the mean of the probability distribution of a random variable X which if 𝑃(𝑋) =
𝑥+1
20
for X= 1, 2, 3, 4, and 5.
P(X=1)=220P(X=1)={\frac 2 {20}}P(X=1)=202
P(X=2)=320P(X=2)={\frac 3 {20}}P(X=2)=203
P(X=3)=420P(X=3)={\frac 4 {20}}P(X=3)=204
P(X=4)=520P(X=4)={\frac 5 {20}}P(X=4)=205
P(X=5)=620P(X=5)={\frac 6 {20}}P(X=5)=206
M(W)=220∗1+320∗2+420∗3+520∗4+620∗5=7020=3.5M(W)={\frac 2 {20}}*1+{\frac 3 {20}}*2+{\frac 4 {20}}*3+{\frac 5 {20}}*4+{\frac 6 {20}}*5={\frac {70}{20}}=3.5M(W)=202∗1+203∗2+204∗3+205∗4+206∗5=2070=3.5
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments