Question #315698

Service calls come to a maintenance center according to a Poisson process, and on


average, 2.7 calls are received per minute. Find the probability that


a) no more than 4 call in any minute;


b) fewer than 2 calls come in any minute;


c) more than 10 calls come in a 5-minute period.

1
Expert's answer
2022-03-25T06:37:09-0400

We have a Poisson distribution,

λ=2.7;Pt(X=k)=(λt)keλtk!=(2.7t)ke2.7tk!.\lambda=2.7; P_t(X=k)=\cfrac{(\lambda t)^k\cdot e^{-\lambda t}}{k!}=\cfrac{(2.7t)^k\cdot e^{-2.7t}}{k!}.


a)

P1(X4)==P1(X=0)+P1(X=1)+P1(X=2)++P1(X=3)+P1(X=4)==2.70e2.70!+2.71e2.71!++2.72e2.72!+2.73e2.73!++2.74e2.74!==0.0672+0.1815+0.2450+0.2205+0.1488==0.8629.P_1(X\leq4)=\\ =P_1(X=0)+P_1(X=1)+P_1(X=2)+\\ +P_1(X=3)+P_1(X=4)=\\ =\cfrac{2.7^0\cdot e^{-2.7}}{0!}+\cfrac{2.7^1\cdot e^{-2.7}}{1!}+\\ +\cfrac{2.7^2\cdot e^{-2.7}}{2!}+\cfrac{2.7^3\cdot e^{-2.7}}{3!}+\\ +\cfrac{2.7^4\cdot e^{-2.7}}{4!}=\\ =0.0672+0.1815+0.2450+0.2205+0.1488=\\=0.8629.


b)

P1(X<2)==P1(X=0)+P1(X=1)==0.0672+0.1815=0.2487.P_1(X<2)=\\ =P_1(X=0)+P_1(X=1)=\\ =0.0672+0.1815=0.2487.


c)

λt=2.75=13.5;P5(X>10)=1P5(X10)==1(P5(X=0)+P5(X=1)+...+P5(X=10))==1(13.500!+13.511!+...13.51010!)e13.5==1(1+13.5+91.13+410.06+1383.96+3736.70++8407.56+16214.59+27362.11+41043.13++55408.28)e13.5==10.2112=0.7888.\lambda t=2.7\cdot5=13.5;\\ P_5(X>10)=1-P_5(X\leq10)=\\ =1-(P_5(X=0)+P_5(X=1)+...+P_5(X=10))=\\ =1-\begin{pmatrix} \cfrac{13.5^0}{0!}+\cfrac{13.5^1}{1!}+...\cfrac{13.5^{10}}{10!} \end{pmatrix}\cdot e^{-13.5}=\\ =1-(1+13.5+91.13+410.06+1383.96+3736.70+\\ +8407.56+16214.59+27362.11+41043.13+\\ +55408.28)\cdot e^{-13.5}=\\ =1-0.2112=0.7888.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS