We have a Poisson distribution,
λ=2.7;Pt(X=k)=k!(λt)k⋅e−λt=k!(2.7t)k⋅e−2.7t.
a)
P1(X≤4)==P1(X=0)+P1(X=1)+P1(X=2)++P1(X=3)+P1(X=4)==0!2.70⋅e−2.7+1!2.71⋅e−2.7++2!2.72⋅e−2.7+3!2.73⋅e−2.7++4!2.74⋅e−2.7==0.0672+0.1815+0.2450+0.2205+0.1488==0.8629.
b)
P1(X<2)==P1(X=0)+P1(X=1)==0.0672+0.1815=0.2487.
c)
λt=2.7⋅5=13.5;P5(X>10)=1−P5(X≤10)==1−(P5(X=0)+P5(X=1)+...+P5(X=10))==1−(0!13.50+1!13.51+...10!13.510)⋅e−13.5==1−(1+13.5+91.13+410.06+1383.96+3736.70++8407.56+16214.59+27362.11+41043.13++55408.28)⋅e−13.5==1−0.2112=0.7888.
Comments