Service calls come to a maintenance center according to a Poisson process, and on
average, 2.7 calls are received per minute. Find the probability that
a) no more than 4 call in any minute;
b) fewer than 2 calls come in any minute;
c) more than 10 calls come in a 5-minute period.
We have a Poisson distribution,
"\\lambda=2.7;\nP_t(X=k)=\\cfrac{(\\lambda t)^k\\cdot e^{-\\lambda t}}{k!}=\\cfrac{(2.7t)^k\\cdot e^{-2.7t}}{k!}."
a)
"P_1(X\\leq4)=\\\\\n=P_1(X=0)+P_1(X=1)+P_1(X=2)+\\\\\n+P_1(X=3)+P_1(X=4)=\\\\\n=\\cfrac{2.7^0\\cdot e^{-2.7}}{0!}+\\cfrac{2.7^1\\cdot e^{-2.7}}{1!}+\\\\\n+\\cfrac{2.7^2\\cdot e^{-2.7}}{2!}+\\cfrac{2.7^3\\cdot e^{-2.7}}{3!}+\\\\\n+\\cfrac{2.7^4\\cdot e^{-2.7}}{4!}=\\\\\n=0.0672+0.1815+0.2450+0.2205+0.1488=\\\\=0.8629."
b)
"P_1(X<2)=\\\\\n=P_1(X=0)+P_1(X=1)=\\\\\n=0.0672+0.1815=0.2487."
c)
"\\lambda t=2.7\\cdot5=13.5;\\\\\n P_5(X>10)=1-P_5(X\\leq10)=\\\\\n=1-(P_5(X=0)+P_5(X=1)+...+P_5(X=10))=\\\\\n=1-\\begin{pmatrix}\n \\cfrac{13.5^0}{0!}+\\cfrac{13.5^1}{1!}+...\\cfrac{13.5^{10}}{10!}\n\\end{pmatrix}\\cdot e^{-13.5}=\\\\\n=1-(1+13.5+91.13+410.06+1383.96+3736.70+\\\\\n+8407.56+16214.59+27362.11+41043.13+\\\\\n+55408.28)\\cdot e^{-13.5}=\\\\\n=1-0.2112=0.7888."
Comments
Leave a comment