Question #224445

From a box containing 5 dimes and 3 nickels, 4 coins are selected at random without replacement.

Find the probability distribution for the total T of the 4 coins. Express the probability distribution graphically as a probability histogram. Find the Expected Value and Standard Deviation of the number of coins.



1
Expert's answer
2021-08-10T13:42:58-0400

For the purposes of this question, the expected probability outcomes are calculated as follows:

Let:

D=DimesD=Dimes

N=NickelsN=Nickels

11 dime=10centsdime=10cents

11 nickel=5centsnickel=5cents

P(4D&0N)=(54)(30)(5+34)=114P(4D \& 0N)=\dfrac{\dbinom{5}{4}\dbinom{3}{0}}{\dbinom{5+3}{4}}=\dfrac{1}{14}


P(3D&1N)=(53)(31)(5+34)=37P(3D \& 1N)=\dfrac{\dbinom{5}{3}\dbinom{3}{1}}{\dbinom{5+3}{4}}=\dfrac{3}{7}


P(2D&2N)=(52)(32)(5+34)=37P(2D \& 2N)=\dfrac{\dbinom{5}{2}\dbinom{3}{2}}{\dbinom{5+3}{4}}=\dfrac{3}{7}


P(1D&3N)=(51)(33)(5+34)=114P(1D \& 3N)=\dfrac{\dbinom{5}{1}\dbinom{3}{3}}{\dbinom{5+3}{4}}=\dfrac{1}{14}

The probability distribution table is presented as follows:

E(T)=114(0.40)+37(0.35)+37(0.30)+114(0.25)E\left(T\right)=\frac{1}{14}\left(0.40\right)+\frac{3}{7}\left(0.35\right)+\frac{3}{7}\left(0.30\right)+\frac{1}{14}\left(0.25\right)

E(T)=0.325E\left(T\right)=0.325


E(T2)=114(0.40)2+37(0.35)2+37(0.30)2+114(0.25)2E\left(T^2\right)=\frac{1}{14}\left(0.40\right)^2+\frac{3}{7}\left(0.35\right)^2+\frac{3}{7}\left(0.30\right)^2+\frac{1}{14}\left(0.25\right)^2

E(T2)=1.794514E\left(T^2\right)=\frac{1.7945}{14}


VarT=σ2=E(T2)(E(T))2V\:ar\:T=\sigma ^2=E\left(T^2\right)-\left(E\left(T\right)\right)^2

V\:ar\:T=\sigma \:^2=\frac{1.4975}{14}-\left(0.325\right)^2\approx 0.001339\:\:


σ=σ2=0.0013390.0366\sigma =\sqrt{\sigma ^2}=\sqrt{0.001339}\approx 0.0366



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS