Question 4:
Let X be a random variable with the following probability distribution:
X -3 6 9
P(X=x) 1/6 1/2 1/3
If the function of random variable is defined as f(X) = (2X+1)2, find µg(X).
To find μg(X)\mu_{g(X)}μg(X) where g(x)=(2x+1)2g(x) = (2x+1)^2g(x)=(2x+1)2
Here μg(X)\mu_{g(X)}μg(X) means expected value of g(x)
μg(X)=∑g(X)f(X)f(x)=(2x+1)2f(−3)=(2(−3)+1)2=(−5)2=25f(6)=(2×6+1)2=132=169f(9)=(2×9+1)2=192=361μg(X)=25×16+169×12+361×13=4.16+84.5+120.33=208.99≈209\mu_{g(X)} = \sum g(X) f(X) \\ f(x) = (2x+1)^2 \\ f(-3) = (2(-3) +1)^2 = (-5)^2 = 25 \\ f(6) = (2 \times 6 +1)^2 = 13^2 = 169 \\ f(9) = (2 \times 9 +1)^2 = 19^2= 361 \\ \mu_{g(X)} = 25 \times \frac{1}{6} + 169 \times \frac{1}{2} + 361 \times \frac{1}{3} \\ = 4.16+84.5+120.33 \\ = 208.99 ≈209μg(X)=∑g(X)f(X)f(x)=(2x+1)2f(−3)=(2(−3)+1)2=(−5)2=25f(6)=(2×6+1)2=132=169f(9)=(2×9+1)2=192=361μg(X)=25×61+169×21+361×31=4.16+84.5+120.33=208.99≈209
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments