Given that there are 4 possible choices.
Suppose a student guesses on each question.
The probability of getting the correct answer is =41=0.25
X=the number of correct questions
n=number of trials=15
p=probability of success=0.25
X follows a binomial distribution with n=10 and p=0.25
P(X=x)=Cxnpx(1−p)n−xP(X>10)=P(X=11)+P(X=12)+P(X=13)+P(X=14)+P(X=15)P(X=11)=11!(15−11)!15!×0.2511×0.7515−11=0.000102P(X=12)=12!(15−12)!15!×0.2512×0.7515−12=1.14×10−5P(X=13)=13!(15−13)!15!×0.2513×0.7515−13=8.80×10−7P(X=14)=14!(15−14)!15!×0.2514×0.7515−14=4.19×10−8P(X=15)=15!(15−15)!15!×0.2515×0.750=9.31×10−10P(X>10)=0.000102+(1.14×10−5)+(8.80×10−7)+(4.19×10−8)+(9.31×10−10)≈0.0001
N=100
Number of students with than 10 marks =100×0.0001=0.01≈0
Comments