Question #224304

A multiple choice quiz has 15 questions, each with 4 possible answers, of which one is correct. How many students would you expect to get more than 10 marks if a class contains 100 students?


1
Expert's answer
2021-08-11T19:23:12-0400

Given that there are 4 possible choices.

Suppose a student guesses on each question.

The probability of getting the correct answer is =14=0.25= \frac{1}{4}=0.25

X=the number of correct questions

n=number of trials=15

p=probability of success=0.25

X follows a binomial distribution with n=10 and p=0.25

P(X=x)=Cxnpx(1p)nxP(X>10)=P(X=11)+P(X=12)+P(X=13)+P(X=14)+P(X=15)P(X=11)=15!11!(1511)!×0.2511×0.751511=0.000102P(X=12)=15!12!(1512)!×0.2512×0.751512=1.14×105P(X=13)=15!13!(1513)!×0.2513×0.751513=8.80×107P(X=14)=15!14!(1514)!×0.2514×0.751514=4.19×108P(X=15)=15!15!(1515)!×0.2515×0.750=9.31×1010P(X>10)=0.000102+(1.14×105)+(8.80×107)+(4.19×108)+(9.31×1010)0.0001P(X=x) = C^n_xp^x(1-p)^{n-x} \\ P(X>10) = P(X=11) + P(X=12) + P(X=13) + P(X=14) + P(X=15) \\ P(X=11) = \frac{15!}{11!(15-11)!} \times 0.25^{11} \times 0.75^{15-11} \\ = 0.000102 \\ P(X=12) = \frac{15!}{12!(15-12)!} \times 0.25^{12} \times 0.75^{15-12} \\ = 1.14 \times 10^{-5} \\ P(X=13) = \frac{15!}{13!(15-13)!} \times 0.25^{13} \times 0.75^{15-13} \\ = 8.80 \times 10^{-7} \\ P(X=14) = \frac{15!}{14!(15-14)!} \times 0.25^{14} \times 0.75^{15-14} \\ = 4.19 \times 10^{-8} \\ P(X=15) = \frac{15!}{15!(15-15)!} \times 0.25^{15} \times 0.75^{0} \\ = 9.31 \times 10^{-10} \\ P(X>10) = 0.000102 + (1.14 \times 10^{-5}) + (8.80 \times 10^{-7}) +(4.19 \times 10^{-8}) + (9.31 \times 10^{-10}) \\ ≈0.0001

N=100

Number of students with than 10 marks =100×0.0001=0.010= 100 \times 0.0001 = 0.01 ≈ 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS