Solution:
Using Σpi=1
(1x−6x)+(61+2x)+(x−61)+(61+x)+(61−2x)+(61+x)=1⇒x=133
Then, the probability distribution:
X=1,p=265X=2,p=7819X=3,p=785X=4,p=398X=5,p=787X=6,p=398
P(S≤6)=P(X=1,X=1)+P(X=1,X=2)+...+P(X=1,X=5)+P(X=2,X=1)+P(X=2,X=2)+...+P(X=2,X=4)+P(X=3,X=1)+P(X=3,X=2)+...+P(X=3,X=3)+P(X=4,X=1)+P(X=4,X=2)+P(X=5,X=1)
=265×265+265×7819+265×785+265×398+265×787
+7819×265+7819×7819+7819×785+7819×398
+785×265+785×7819+785×785
+398×265+398×7819 +787×265
=1014155+60841045+1565+1521136+202835=60842819
Comments