Question #224295

Two dice are used, each die loaded so that the probabilities of 1,2,3,4,5,6 are x1-x/6, 1+2x/6, x-1/6, 1+x/6, 1-2x/6, 1+x/6 respectively.

Compute the probability in rolling the two dice sum up to six


1
Expert's answer
2021-08-12T18:18:44-0400

Solution:

Using Σpi=1\Sigma p_i=1

(x1x6)+(1+2x6)+(x16)+(1+x6)+(12x6)+(1+x6)=1x=313(\dfrac{x}{1}-\dfrac{x}{6})+(\dfrac{1+2x}{6})+(x-\dfrac{1}{6})+(\dfrac{1+x}{6})+(\dfrac{1-2x}{6})+(\dfrac{1+x}{6})=1 \\\Rightarrow x=\dfrac3{13}

Then, the probability distribution:

X=1,p=526X=2,p=1978X=3,p=578X=4,p=839X=5,p=778X=6,p=839X=1,p=\dfrac{5}{26} \\ X=2,p=\dfrac{19}{78} \\ X=3,p=\dfrac{5}{78} \\ X=4,p=\dfrac{8}{39} \\ X=5,p=\dfrac{7}{78} \\ X=6,p=\dfrac{8}{39}

P(S6)=P(X=1,X=1)+P(X=1,X=2)+...+P(X=1,X=5)+P(X=2,X=1)+P(X=2,X=2)+...+P(X=2,X=4)+P(X=3,X=1)+P(X=3,X=2)+...+P(X=3,X=3)+P(X=4,X=1)+P(X=4,X=2)+P(X=5,X=1)P(S\le 6)=P(X=1,X=1)+P(X=1,X=2)+...+P(X=1,X=5) \\+P(X=2,X=1)+P(X=2,X=2)+...+P(X=2,X=4) \\+P(X=3,X=1)+P(X=3,X=2)+...+P(X=3,X=3) \\+P(X=4,X=1)+P(X=4,X=2) \\+P(X=5,X=1)

=526×526+526×1978+526×578+526×839+526×778=\dfrac{5}{26}\times \dfrac{5}{26}+\dfrac{5}{26}\times \dfrac{19}{78}+\dfrac{5}{26}\times\dfrac{5}{78}+\dfrac{5}{26}\times\dfrac{8}{39}+\dfrac{5}{26}\times\dfrac{7}{78}

+1978×526+1978×1978+1978×578+1978×839+\dfrac{19}{78}\times \dfrac{5}{26}+\dfrac{19}{78}\times \dfrac{19}{78}+\dfrac{19}{78}\times \dfrac{5}{78}+\dfrac{19}{78}\times \dfrac{8}{39}

+578×526+578×1978+578×578+\dfrac{5}{78}\times\dfrac{5}{26} +\dfrac{5}{78}\times\dfrac{19}{78} +\dfrac{5}{78}\times \dfrac{5}{78}

+839×526+839×1978+\dfrac{8}{39}\times \dfrac{5}{26}+\dfrac{8}{39}\times\dfrac{19}{78} +778×526+\dfrac{7}{78}\times\dfrac{5}{26}

=1551014+10456084+5156+1361521+352028=28196084=\dfrac{155}{1014}+\dfrac{1045}{6084}+\dfrac{5}{156}+\dfrac{136}{1521}+\dfrac{35}{2028} \\=\dfrac{2819}{6084}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS