Let "X=" the amount of coffee in a cup: "X\\sim N(\\mu, \\sigma^2)."
Given "\\mu=210\\ ml, \\sigma=13.5\\ ml."
a)
"=1-P(Z\\leq \\dfrac{14}{9})\\approx0.0599"
6% of the cups will contain more than 231 ml.
b)
"=P(Z<\\dfrac{220-210}{13.5})-P(Z\\leq\\dfrac{180-210}{13.5})"
"0.757441"
c)
"P(X>235)=1-P(Z\\leq\\dfrac{235-210}{13.5})""=1-P(Z\\leq\\dfrac{50}{27})\\approx0.032024"
"0.032024(900)=29"
"29" cups
d)
"P(Z\\leq\\dfrac{x-210}{13.5})=0.85"
"\\dfrac{x-210}{13.5}\\approx1.036433"
"x=224"
"224" ml.
Comments
Leave a comment