Two refills for a ball point pen are selected at random for a box that contains ‘a’
blue, 3 red and 3 green refills. If X is the number of blue refills and Y is the number
of red refills selected .Find the joint probability function
f (x, y) and P[(X,Y) element A],
where A is the region { (x,y): x+y <=1}.
Total # of ways to choose 2 refills "=9C_2=\\frac{9!}{\\left(2!\\times \\left(9-2\\right)!\\right)}=36"
"P(X = 0, Y = 0) = \\left(no\\:blue\\:and\\:no\\:red\\right) = P\\left(all\\:are\\:green\\right)" "=\\frac{3C_2}{36}=\\frac{3}{36}=\\frac{1}{12}"
"P\\left(X\\:=\\:0,\\:Y\\:=\\:1\\right)\\:=\\:P\\left(1\\:red,\\:1\\:green\\right)\\:=\\:\\frac{3C_1\\:\\times 3C_1}{36}=\\:\\frac{3\\times 3}{36}=\\frac{1}{4}"
"P\\left(X\\:=\\:0,\\:Y\\:=\\:2\\right)\\:=\\:P\\left(2\\:red\\right)\\:=\\:\\frac{3C_2}{36}\\:=\\:\\frac{3}{36}\\:=\\frac{1}{12}"
"\\:P\\left(X\\:=\\:1,\\:Y\\:=\\:0\\right)\\:=\\:P\\left(1\\:blue,\\:1\\:green\\right)\\:=\\frac{3C_1\\:\\times 3C_1}{36}=\\:\\frac{3\\times 3}{36}=\\frac{1}{4}"
"P\\left(X\\:=\\:1,\\:Y\\:=\\:1\\right)\\:=\\:P\\left(1\\:blue,\\:1\\:red\\right)\\:=\\frac{3C_1\\:\\times 3C_1}{36}=\\:\\frac{3\\times 3}{36}=\\frac{1}{4}"
"P\\left(X\\:=\\:1,\\:Y\\:=\\:2\\right)\\:=\\:P\\left(1\\:blue,\\:2\\:red\\right)=\\:0"
"P\\left(X\\:=\\:2,\\:Y\\:=\\:0\\right)\\:=\\:P\\left(2\\:blue\\right)\\:=\\frac{\\:3C_2}{36}\\:\\:=\\:\\frac{3}{36}\\:=\\frac{1}{12}"
"P\\left(X\\:=\\:2,\\:Y\\:=\\:1\\right)=P\\left(2\\:blue,\\:1\\:red\\right)=0"
"P\\left(X\\:=\\:2,\\:Y\\:=\\:2\\right)=P\\left(2\\:blue,\\:2\\:red\\right)=0"
Comments
Leave a comment