Question #224196

A random variable X has the probability density function given below

f (x)= {x ,0<=x< 1

{2-x, 1<=x<2 Show graphically and find out the robabilities. p(-1<x<a)

{ 0, otherwise

.


1
Expert's answer
2021-08-10T09:38:09-0400

Solution:

f(x)={x,     0x<1              2x,1x<2               0,      otherwisef(x)=\{x, \ \ \ \ \ 0\le x<1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2-x, 1\le x<2 \\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0, \ \ \ \ \ \ otherwise


P(1<x<a)=P(1<x<0)+P(0x<a)=0+P(0x<a)=P(0x<a)P(-1< x<a)=P(-1<x<0)+P(0\le x<a)=0+P(0\le x<a) \\=P(0\le x<a)

Now, we will have 2 cases:

Case I: When a<1a<1

P(0x<a)=0axdx=(x2/2)0a=0.5(a20)=0.5a2P(0\le x<a)=\int_0^ax dx=(x^2/2)_0^a=0.5(a^2-0)=0.5a^2

Case II: When 1a<21\le a<2

P(0x<a)=P(0x<1)+P(1x<a)=01xdx+1a(2x)dx=(x2/2)01+(2xx2/2)1a=0.5(10)+2(a1)0.5(a21)=0.5+2a20.5a2+0.5=2a0.5a21P(0\le x<a)=P(0\le x<1)+P(1\le x<a) \\=\int_0^1x dx+\int_1^a(2-x) dx=(x^2/2)_0^1+(2x-x^2/2)_1^a \\=0.5(1-0)+2(a-1)-0.5(a^2-1)=0.5+2a-2-0.5a^2+0.5 \\=2a-0.5a^2-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS