Solution:
f(x)={x, 0≤x<1 2−x,1≤x<2 0, otherwise
P(−1<x<a)=P(−1<x<0)+P(0≤x<a)=0+P(0≤x<a)=P(0≤x<a)
Now, we will have 2 cases:
Case I: When a<1
P(0≤x<a)=∫0axdx=(x2/2)0a=0.5(a2−0)=0.5a2
Case II: When 1≤a<2
P(0≤x<a)=P(0≤x<1)+P(1≤x<a)=∫01xdx+∫1a(2−x)dx=(x2/2)01+(2x−x2/2)1a=0.5(1−0)+2(a−1)−0.5(a2−1)=0.5+2a−2−0.5a2+0.5=2a−0.5a2−1
Comments