A random variable X has the probability density function given below
f (x)= {x ,0<=x< 1
{2-x, 1<=x<2 Show graphically and find out the robabilities. p(-1<x<a)
{ 0, otherwise
.
Solution:
"f(x)=\\{x, \\ \\ \\ \\ \\ 0\\le x<1\n\\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 2-x, 1\\le x<2\n\\\\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 0, \\ \\ \\ \\ \\ \\ otherwise"
"P(-1< x<a)=P(-1<x<0)+P(0\\le x<a)=0+P(0\\le x<a)\n\\\\=P(0\\le x<a)"
Now, we will have 2 cases:
Case I: When "a<1"
"P(0\\le x<a)=\\int_0^ax dx=(x^2\/2)_0^a=0.5(a^2-0)=0.5a^2"
Case II: When "1\\le a<2"
"P(0\\le x<a)=P(0\\le x<1)+P(1\\le x<a)\n\\\\=\\int_0^1x dx+\\int_1^a(2-x) dx=(x^2\/2)_0^1+(2x-x^2\/2)_1^a\n\\\\=0.5(1-0)+2(a-1)-0.5(a^2-1)=0.5+2a-2-0.5a^2+0.5\n\\\\=2a-0.5a^2-1"
Comments
Leave a comment