Solution:
Using "\\Sigma p_i=1"
"(\\dfrac{x}{1}-\\dfrac{x}{6})+(\\dfrac{1+2x}{6})+(x-\\dfrac{1}{6})+(\\dfrac{1+x}{6})+(\\dfrac{1-2x}{6})+(\\dfrac{1+x}{6})=1\n\\\\\\Rightarrow x=\\dfrac3{13}"
Then, the probability distribution:
"X=1,p=\\dfrac{5}{26}\n\\\\ X=2,p=\\dfrac{19}{78}\n\\\\ X=3,p=\\dfrac{5}{78}\n\\\\ X=4,p=\\dfrac{8}{39}\n\\\\ X=5,p=\\dfrac{7}{78}\n\\\\ X=6,p=\\dfrac{8}{39}"
"P(S\\le 7)=P(X=1,X=1)+P(X=1,X=2)+...+P(X=1,X=6)\n\\\\+P(X=2,X=1)+P(X=2,X=2)+...+P(X=2,X=5)\n\\\\+P(X=3,X=1)+P(X=3,X=2)+...+P(X=3,X=4)\n\\\\+P(X=4,X=1)+P(X=4,X=2)+P(X=4,X=3)\n\\\\+P(X=5,X=1)+P(X=5,X=2)+P(X=6,X=1)"
"=\\dfrac{5}{26}\\times \\dfrac{5}{26}+\\dfrac{5}{26}\\times \\dfrac{19}{78}+\\dfrac{5}{26}\\times\\dfrac{5}{78}+\\dfrac{5}{26}\\times\\dfrac{8}{39}+\\dfrac{5}{26}\\times\\dfrac{7}{78}+\\dfrac{5}{26}\\times\\dfrac{8}{39}"
"+\\dfrac{19}{78}\\times \\dfrac{5}{26}+\\dfrac{19}{78}\\times \\dfrac{19}{78}+\\dfrac{19}{78}\\times \\dfrac{5}{78}+\\dfrac{19}{78}\\times \\dfrac{8}{39}+\\dfrac{19}{78}\\times \\dfrac{7}{78}"
"+\\dfrac{5}{78}\\times\\dfrac{5}{26} +\\dfrac{5}{78}\\times\\dfrac{19}{78} +\\dfrac{5}{78}\\times \\dfrac{5}{78}+\\dfrac{5}{78}\\times \\dfrac{8}{39}"
"+\\dfrac{8}{39}\\times \\dfrac{5}{26}+\\dfrac{8}{39}\\times\\dfrac{19}{78} +\\dfrac{8}{39}\\times \\dfrac{5}{78}" "+\\dfrac{7}{78}\\times\\dfrac{5}{26}+\\dfrac{7}{78}\\times \\dfrac{19}{78}+\\dfrac{8}{39}\\times \\dfrac{5}{26}"
"=\\dfrac{5}{26}+\\dfrac{589}{3042}+\\dfrac{275}{6084}+\\dfrac{4}{39}+\\dfrac{119}{3042}+\\dfrac{20}{507}\n\\\\=\\dfrac{3725}{6084}"
Comments
Leave a comment