Question #214024

The lifetime T in tens of hours of a battery has a cumulative distribution function

F(t)={0,t<1

{k(t2+2t-3),1<t<or equal to 1.5

{1,t>5

Find k and hence find p(T>1.2) and find the median of T


1
Expert's answer
2021-07-13T10:40:55-0400
F(t)={0,t<1k(t2+2t3),1t1.51,t>1.5F(t) = \begin{cases} 0, & t<1 \\ k(t^2+2t-3), &1\leq t\leq 1.5 \\ 1, & t>1.5 \end{cases}

1. Differentiate with respect to tt


f(t)={k(2t+2),1t1.50,otherwisef(t) = \begin{cases} k(2t+2), &1\leq t\leq 1.5 \\ 0, & otherwise \end{cases}

f(t)dt=11.5k(2t+2)dt\displaystyle\int_{-\infin}^{\infin}f(t)dt=\displaystyle\int_{1}^{1.5}k(2t+2)dt

=k[t2+2t]1.51=k(2.25+312)=2.25k=1=k[t^2+2t]\begin{matrix} 1.5 \\ 1 \end{matrix}=k(2.25+3-1-2)=2.25k=1

k=49k=\dfrac{4}{9}

2.


P(T>1.2)=1P(T1.2)=1F(1.2)P(T>1.2)=1-P(T\leq1.2)=1-F(1.2)

=149(1.22+2(1.2)3)=1.8830.6267=1-\dfrac{4}{9}(1.2^2+2(1.2)-3)=\dfrac{1.88}{3}\approx0.6267

3.


49(m2+2m3)=0.5\dfrac{4}{9}(m^2+2m-3)=0.5

m2+2m3=1.125m^2+2m-3=1.125

m2+2m4.125=0m^2+2m-4.125=0

m=1±5.125m=-1\pm\sqrt{5.125}

SInce median >0,>0, we take


median=1+5.1251.264median=-1+\sqrt{5.125}\approx1.264



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS