Question #213998

The moment generating function of a random variable Y is given by M(t)=(5e-t-4)-t. Find the standard deviation of y


1
Expert's answer
2021-07-12T12:27:49-0400

M(t)=(5et4)tM(t)=(5e^{-t}-4)^{-t}

M(t)=5tet5et4ln(5et4)(5et4)tM^\prime(t)=\dfrac{\frac{5t\mathrm{e}^{-t}}{5\mathrm{e}^{-t}-4}-\ln\left(5\mathrm{e}^{-t}-4\right)}{\left(5\mathrm{e}^{-t}-4\right)^t}

E(x)=M(0)=0E(x)=M^\prime(0)=0

M(t)=(16e2t40et+25)ln2(5et4)+(40tet50t)ln(5et4)+(20t40)et+25t2+50(5et4)t(4et5)2M^{\prime\prime}(t)=\dfrac{\left(16\mathrm{e}^{2t}-40\mathrm{e}^t+25\right)\ln^2\left(5\mathrm{e}^{-t}-4\right)+\left(40t\mathrm{e}^t-50t\right)\ln\left(5\mathrm{e}^{-t}-4\right)+\left(20t-40\right)\mathrm{e}^t+25t^2+50}{\left(5\mathrm{e}^{-t}-4\right)^t\left(4\mathrm{e}^t-5\right)^2}

E(x2)=M(0)=10E(x^2)=M^{\prime\prime}(0)=10

σ=E(x2(E(x))2\sigma=\sqrt{E(x^2-(E(x))^2}

=100=\sqrt{10-0}

=10=\sqrt{10}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS