The moment generating function of a random variable Y is given by M(t)=(5e-t-4)-t. Find the standard deviation of y
"M(t)=(5e^{-t}-4)^{-t}"
"M^\\prime(t)=\\dfrac{\\frac{5t\\mathrm{e}^{-t}}{5\\mathrm{e}^{-t}-4}-\\ln\\left(5\\mathrm{e}^{-t}-4\\right)}{\\left(5\\mathrm{e}^{-t}-4\\right)^t}"
"E(x)=M^\\prime(0)=0"
"M^{\\prime\\prime}(t)=\\dfrac{\\left(16\\mathrm{e}^{2t}-40\\mathrm{e}^t+25\\right)\\ln^2\\left(5\\mathrm{e}^{-t}-4\\right)+\\left(40t\\mathrm{e}^t-50t\\right)\\ln\\left(5\\mathrm{e}^{-t}-4\\right)+\\left(20t-40\\right)\\mathrm{e}^t+25t^2+50}{\\left(5\\mathrm{e}^{-t}-4\\right)^t\\left(4\\mathrm{e}^t-5\\right)^2}"
"E(x^2)=M^{\\prime\\prime}(0)=10"
"\\sigma=\\sqrt{E(x^2-(E(x))^2}"
"=\\sqrt{10-0}"
"=\\sqrt{10}"
Comments
Leave a comment