The p.d.f of a continuous random variable is give
P(x) ={ kx (1-x) e^x , 0 ≤ x ≤ 1
{ 0, otherwise
Find k and hence find mean and standard deviation
"\\int^1_0 kx(1-x)e^xdx=1"
"\\int^1_0 kx(1-x)e^xdx=[ke^x(x-1)-ke^x(x^2-2x+2)]|^1_0="
"=-ke+k+2k"
"-ke+k+2k=1"
"k=\\frac{1}{1-e}"
"E(X)=\\int^1_0 kx^2(1-x)e^xdx=[ke^x(x^2-2x+2)-ke^x(x^3-3x^2+6x-6)]|^1_0="
"=3ke-2k-6k=\\frac{3e-8}{1-e}"
"V(X)=E(X^2)-(E(X))^2"
"E(X^2)=\\int^1_0 kx^3(1-x)e^xdx=[ke^x(x^3-3x^2+6x-6)-"
"-ke^x(x^4-4x^3+12x^2-24x+24)]|^1_0=-11ke+30k=\\frac{30-11e}{1-e}"
"V(X)=\\frac{30-11e}{1-e}-(\\frac{3e-8}{1-e})^2=\\frac{30-30e-11e+11e^2}{(1-e)^2}=\\frac{11e^2-41e+30}{(1-e)^2}"
"\\sigma=\\sqrt{V(X)}=\\frac{\\sqrt{11e^2-41e+30}}{1-e}"
Comments
Leave a comment