Question #213888

The p.d.f of a continuous random variable is give


P(x) ={ kx (1-x) e^x , 0 ≤ x ≤ 1

{ 0, otherwise

Find k and hence find mean and standard deviation


1
Expert's answer
2021-07-19T13:32:25-0400

01kx(1x)exdx=1\int^1_0 kx(1-x)e^xdx=1


01kx(1x)exdx=[kex(x1)kex(x22x+2)]01=\int^1_0 kx(1-x)e^xdx=[ke^x(x-1)-ke^x(x^2-2x+2)]|^1_0=

=ke+k+2k=-ke+k+2k

ke+k+2k=1-ke+k+2k=1

k=11ek=\frac{1}{1-e}


E(X)=01kx2(1x)exdx=[kex(x22x+2)kex(x33x2+6x6)]01=E(X)=\int^1_0 kx^2(1-x)e^xdx=[ke^x(x^2-2x+2)-ke^x(x^3-3x^2+6x-6)]|^1_0=


=3ke2k6k=3e81e=3ke-2k-6k=\frac{3e-8}{1-e}


V(X)=E(X2)(E(X))2V(X)=E(X^2)-(E(X))^2


E(X2)=01kx3(1x)exdx=[kex(x33x2+6x6)E(X^2)=\int^1_0 kx^3(1-x)e^xdx=[ke^x(x^3-3x^2+6x-6)-


kex(x44x3+12x224x+24)]01=11ke+30k=3011e1e-ke^x(x^4-4x^3+12x^2-24x+24)]|^1_0=-11ke+30k=\frac{30-11e}{1-e}


V(X)=3011e1e(3e81e)2=3030e11e+11e2(1e)2=11e241e+30(1e)2V(X)=\frac{30-11e}{1-e}-(\frac{3e-8}{1-e})^2=\frac{30-30e-11e+11e^2}{(1-e)^2}=\frac{11e^2-41e+30}{(1-e)^2}


σ=V(X)=11e241e+301e\sigma=\sqrt{V(X)}=\frac{\sqrt{11e^2-41e+30}}{1-e}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS